Files
t6_mem0/mem0/llms/gemini.py
2025-06-17 17:47:09 +05:30

192 lines
6.2 KiB
Python

import os
from typing import Dict, List, Optional
try:
from google import genai
from google.genai import types
except ImportError:
raise ImportError(
"The 'google-generativeai' library is required. Please install it using 'pip install google-generativeai'."
)
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class GeminiLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model = "gemini-1.5-flash-latest"
api_key = self.config.api_key or os.getenv("GEMINI_API_KEY")
self.client_gemini = genai.Client(
api_key=api_key,
)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from the API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
candidate = response.candidates[0]
content = candidate.content.parts[0].text if candidate.content.parts else None
if tools:
processed_response = {
"content": content,
"tool_calls": [],
}
for part in candidate.content.parts:
fn = getattr(part, "function_call", None)
if fn:
processed_response["tool_calls"].append({
"name": fn.name,
"arguments": fn.args,
})
return processed_response
return content
def _reformat_messages(self, messages: List[Dict[str, str]]) -> List[types.Content]:
"""
Reformat messages for Gemini using google.genai.types.
Args:
messages: The list of messages provided in the request.
Returns:
list: A list of types.Content objects with proper role and parts.
"""
new_messages = []
for message in messages:
if message["role"] == "system":
content = "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: " + message["content"]
else:
content = message["content"]
new_messages.append(
types.Content(
role="model" if message["role"] == "model" else "user",
parts=[types.Part(text=content)]
)
)
return new_messages
def _reformat_tools(self, tools: Optional[List[Dict]]):
"""
Reformat tools for Gemini.
Args:
tools: The list of tools provided in the request.
Returns:
list: The list of tools in the required format.
"""
def remove_additional_properties(data):
"""Recursively removes 'additionalProperties' from nested dictionaries."""
if isinstance(data, dict):
filtered_dict = {
key: remove_additional_properties(value)
for key, value in data.items()
if not (key == "additionalProperties")
}
return filtered_dict
else:
return data
new_tools = []
if tools:
for tool in tools:
func = tool["function"].copy()
new_tools.append({"function_declarations": [remove_additional_properties(func)]})
# TODO: temporarily ignore it to pass tests, will come back to update according to standards later.
# return content_types.to_function_library(new_tools)
return new_tools
else:
return None
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using Gemini.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format for the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {
"temperature": self.config.temperature,
"max_output_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if response_format is not None and response_format["type"] == "json_object":
params["response_mime_type"] = "application/json"
if "schema" in response_format:
params["response_schema"] = response_format["schema"]
tool_config = None
if tool_choice:
tool_config = types.ToolConfig(
function_calling_config=types.FunctionCallingConfig(
mode=tool_choice.upper(), # Assuming 'any' should become 'ANY', etc.
allowed_function_names=[
tool["function"]["name"] for tool in tools
] if tool_choice == "any" else None
)
)
print(f"Tool config: {tool_config}")
print(f"Params: {params}" )
print(f"Messages: {messages}")
print(f"Tools: {tools}")
print(f"Reformatted messages: {self._reformat_messages(messages)}")
print(f"Reformatted tools: {self._reformat_tools(tools)}")
response = self.client_gemini.models.generate_content(
model=self.config.model,
contents=self._reformat_messages(messages),
config=types.GenerateContentConfig(
temperature= self.config.temperature,
max_output_tokens= self.config.max_tokens,
top_p= self.config.top_p,
tools=self._reformat_tools(tools),
tool_config=tool_config,
),
)
print(f"Response test: {response}")
return self._parse_response(response, tools)