Files
t6_mem0/mem0/llms/ollama.py
Prateek Chhikara 5b9b65c395 Doc Updates (#1843)
2024-09-09 19:06:22 -07:00

95 lines
3.1 KiB
Python

from typing import Dict, List, Optional
try:
from ollama import Client
except ImportError:
raise ImportError("The 'ollama' library is required. Please install it using 'pip install ollama'.")
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class OllamaLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model = "llama3.1:70b"
self.client = Client(host=self.config.ollama_base_url)
self._ensure_model_exists()
def _ensure_model_exists(self):
"""
Ensure the specified model exists locally. If not, pull it from Ollama.
"""
local_models = self.client.list()["models"]
if not any(model.get("name") == self.config.model for model in local_models):
self.client.pull(self.config.model)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
if tools:
processed_response = {
"content": response["message"]["content"],
"tool_calls": [],
}
if response["message"].get("tool_calls"):
for tool_call in response["message"]["tool_calls"]:
processed_response["tool_calls"].append(
{
"name": tool_call["function"]["name"],
"arguments": tool_call["function"]["arguments"],
}
)
return processed_response
else:
return response["message"]["content"]
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using OpenAI.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {
"model": self.config.model,
"messages": messages,
"options": {
"temperature": self.config.temperature,
"num_predict": self.config.max_tokens,
"top_p": self.config.top_p,
},
}
if response_format:
params["format"] = "json"
if tools:
params["tools"] = tools
response = self.client.chat(**params)
return self._parse_response(response, tools)