44 lines
1.1 KiB
Plaintext
44 lines
1.1 KiB
Plaintext
[Redis](https://redis.io/) is a scalable, real-time database that can store, search, and analyze vector data.
|
|
|
|
### Installation
|
|
```bash
|
|
pip install redis redisvl
|
|
```
|
|
|
|
Redis Stack using Docker:
|
|
```bash
|
|
docker run -d --name redis-stack -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
|
|
```
|
|
|
|
### Usage
|
|
|
|
```python
|
|
import os
|
|
from mem0 import Memory
|
|
|
|
os.environ["OPENAI_API_KEY"] = "sk-xx"
|
|
|
|
config = {
|
|
"vector_store": {
|
|
"provider": "redis",
|
|
"config": {
|
|
"collection_name": "mem0",
|
|
"embedding_model_dims": 1536,
|
|
"redis_url": "redis://localhost:6379"
|
|
}
|
|
}
|
|
}
|
|
|
|
m = Memory.from_config(config)
|
|
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
|
|
```
|
|
|
|
### Config
|
|
|
|
Let's see the available parameters for the `redis` config:
|
|
|
|
| Parameter | Description | Default Value |
|
|
| --- | --- | --- |
|
|
| `collection_name` | The name of the collection to store the vectors | `mem0` |
|
|
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
|
|
| `redis_url` | The URL of the Redis server | `None` | |