Files
t6_mem0/mem0/llms/langchain.py

66 lines
2.3 KiB
Python

from typing import Dict, List, Optional
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
try:
from langchain.chat_models.base import BaseChatModel
except ImportError:
raise ImportError("langchain is not installed. Please install it using `pip install langchain`")
class LangchainLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if self.config.model is None:
raise ValueError("`model` parameter is required")
if not isinstance(self.config.model, BaseChatModel):
raise ValueError("`model` must be an instance of BaseChatModel")
self.langchain_model = self.config.model
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using langchain_community.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response. Not used in Langchain.
tools (list, optional): List of tools that the model can call. Not used in Langchain.
tool_choice (str, optional): Tool choice method. Not used in Langchain.
Returns:
str: The generated response.
"""
try:
# Convert the messages to LangChain's tuple format
langchain_messages = []
for message in messages:
role = message["role"]
content = message["content"]
if role == "system":
langchain_messages.append(("system", content))
elif role == "user":
langchain_messages.append(("human", content))
elif role == "assistant":
langchain_messages.append(("ai", content))
if not langchain_messages:
raise ValueError("No valid messages found in the messages list")
ai_message = self.langchain_model.invoke(langchain_messages)
return ai_message.content
except Exception as e:
raise Exception(f"Error generating response using langchain model: {str(e)}")