224 lines
6.7 KiB
Python
224 lines
6.7 KiB
Python
import logging
|
|
from typing import Optional
|
|
|
|
from pydantic import BaseModel
|
|
|
|
try:
|
|
import chromadb
|
|
from chromadb.config import Settings
|
|
except ImportError:
|
|
raise ImportError("Chromadb requires extra dependencies. Install with `pip install chromadb`") from None
|
|
|
|
from mem0.vector_stores.base import VectorStoreBase
|
|
|
|
|
|
class OutputData(BaseModel):
|
|
id: Optional[str] # memory id
|
|
score: Optional[float] # distance
|
|
payload: Optional[dict] # metadata
|
|
|
|
|
|
class ChromaDB(VectorStoreBase):
|
|
def __init__(
|
|
self,
|
|
collection_name,
|
|
client,
|
|
host,
|
|
port,
|
|
path
|
|
):
|
|
"""
|
|
Initialize the Chromadb vector store.
|
|
|
|
Args:
|
|
client (chromadb.Client, optional): Existing chromadb client instance.
|
|
host (str, optional): Host address for chromadb server.
|
|
port (int, optional): Port for chromadb server.
|
|
path (str, optional): Path for local chromadb database.
|
|
"""
|
|
if client:
|
|
self.client = client
|
|
else:
|
|
self.settings = Settings(anonymized_telemetry=False)
|
|
|
|
if host and port:
|
|
self.settings.chroma_server_host = host
|
|
self.settings.chroma_server_http_port = port
|
|
self.settings.chroma_api_impl = "chromadb.api.fastapi.FastAPI"
|
|
else:
|
|
if path is None:
|
|
path = "db"
|
|
|
|
self.settings.persist_directory = path
|
|
self.settings.is_persistent = True
|
|
|
|
self.client = chromadb.Client(self.settings)
|
|
|
|
self.collection = self.create_col(collection_name)
|
|
|
|
def _parse_output(self, data):
|
|
"""
|
|
Parse the output data.
|
|
|
|
Args:
|
|
data (dict): Output data.
|
|
|
|
Returns:
|
|
list: Parsed output data.
|
|
"""
|
|
keys = ['ids', 'distances', 'metadatas']
|
|
values = []
|
|
|
|
for key in keys:
|
|
value = data.get(key, [])
|
|
if isinstance(value, list) and value and isinstance(value[0], list):
|
|
value = value[0]
|
|
values.append(value)
|
|
|
|
ids, distances, metadatas = values
|
|
max_length = max(len(v) for v in values if isinstance(v, list) and v is not None)
|
|
|
|
result = []
|
|
for i in range(max_length):
|
|
entry = OutputData(
|
|
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
|
|
score=distances[i] if isinstance(distances, list) and distances and i < len(distances) else None,
|
|
payload=metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None,
|
|
)
|
|
result.append(entry)
|
|
|
|
return result
|
|
|
|
def create_col(self, name, embedding_fn=None):
|
|
"""
|
|
Create a new collection.
|
|
|
|
Args:
|
|
name (str): Name of the collection.
|
|
embedding_fn (function): Embedding function to use. Defaults to None.
|
|
"""
|
|
# Skip creating collection if already exists
|
|
collections = self.list_cols()
|
|
for collection in collections:
|
|
if collection.name == name:
|
|
logging.debug(f"Collection {name} already exists. Skipping creation.")
|
|
|
|
collection = self.client.get_or_create_collection(
|
|
name=name,
|
|
embedding_function=embedding_fn,
|
|
)
|
|
return collection
|
|
|
|
def insert(self, name, vectors, payloads=None, ids=None):
|
|
"""
|
|
Insert vectors into a collection.
|
|
|
|
Args:
|
|
name (str): Name of the collection.
|
|
vectors (list): List of vectors to insert.
|
|
payloads (list, optional): List of payloads corresponding to vectors. Defaults to None.
|
|
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
|
|
"""
|
|
|
|
self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads)
|
|
|
|
def search(self, name, query, limit=5, filters=None):
|
|
"""
|
|
Search for similar vectors.
|
|
|
|
Args:
|
|
name (str): Name of the collection.
|
|
query (list): Query vector.
|
|
limit (int, optional): Number of results to return. Defaults to 5.
|
|
filters (dict, optional): Filters to apply to the search. Defaults to None.
|
|
|
|
Returns:
|
|
list: Search results.
|
|
"""
|
|
results = self.collection.query(query_embeddings=query, where=filters, n_results=limit)
|
|
final_results = self._parse_output(results)
|
|
return final_results
|
|
|
|
def delete(self, name, vector_id):
|
|
"""
|
|
Delete a vector by ID.
|
|
|
|
Args:
|
|
name (str): Name of the collection.
|
|
vector_id (int): ID of the vector to delete.
|
|
"""
|
|
|
|
self.collection.delete(ids=vector_id)
|
|
|
|
def update(self, name, vector_id, vector=None, payload=None):
|
|
"""
|
|
Update a vector and its payload.
|
|
|
|
Args:
|
|
name (str): Name of the collection.
|
|
vector_id (int): ID of the vector to update.
|
|
vector (list, optional): Updated vector. Defaults to None.
|
|
payload (dict, optional): Updated payload. Defaults to None.
|
|
"""
|
|
|
|
self.collection.update(ids=vector_id, embeddings=vector, metadatas=payload)
|
|
|
|
def get(self, name, vector_id):
|
|
"""
|
|
Retrieve a vector by ID.
|
|
|
|
Args:
|
|
name (str): Name of the collection.
|
|
vector_id (int): ID of the vector to retrieve.
|
|
|
|
Returns:
|
|
dict: Retrieved vector.
|
|
"""
|
|
result = self.collection.get(ids=[vector_id])
|
|
return self._parse_output(result)[0]
|
|
|
|
def list_cols(self):
|
|
"""
|
|
List all collections.
|
|
|
|
Returns:
|
|
list: List of collection names.
|
|
"""
|
|
return self.client.list_collections()
|
|
|
|
def delete_col(self, name):
|
|
"""
|
|
Delete a collection.
|
|
|
|
Args:
|
|
name (str): Name of the collection to delete.
|
|
"""
|
|
self.client.delete_collection(name=name)
|
|
|
|
def col_info(self, name):
|
|
"""
|
|
Get information about a collection.
|
|
|
|
Args:
|
|
name (str): Name of the collection.
|
|
|
|
Returns:
|
|
dict: Collection information.
|
|
"""
|
|
return self.client.get_collection(name=name)
|
|
|
|
def list(self, name, filters=None, limit=100):
|
|
"""
|
|
List all vectors in a collection.
|
|
|
|
Args:
|
|
name (str): Name of the collection.
|
|
filters (dict, optional): Filters to apply to the list.
|
|
limit (int, optional): Number of vectors to return. Defaults to 100.
|
|
|
|
Returns:
|
|
list: List of vectors.
|
|
"""
|
|
array = [[0 for _ in range(1536)] for _ in range(1536)]
|
|
results = self.collection.query(query_embeddings=array, where=filters, n_results=limit)
|
|
return [self._parse_output(results)] |