Files
t6_mem0/mem0/vector_stores/chroma.py
2024-08-03 21:48:27 +05:30

224 lines
6.7 KiB
Python

import logging
from typing import Optional
from pydantic import BaseModel
try:
import chromadb
from chromadb.config import Settings
except ImportError:
raise ImportError("Chromadb requires extra dependencies. Install with `pip install chromadb`") from None
from mem0.vector_stores.base import VectorStoreBase
class OutputData(BaseModel):
id: Optional[str] # memory id
score: Optional[float] # distance
payload: Optional[dict] # metadata
class ChromaDB(VectorStoreBase):
def __init__(
self,
collection_name,
client,
host,
port,
path
):
"""
Initialize the Chromadb vector store.
Args:
client (chromadb.Client, optional): Existing chromadb client instance.
host (str, optional): Host address for chromadb server.
port (int, optional): Port for chromadb server.
path (str, optional): Path for local chromadb database.
"""
if client:
self.client = client
else:
self.settings = Settings(anonymized_telemetry=False)
if host and port:
self.settings.chroma_server_host = host
self.settings.chroma_server_http_port = port
self.settings.chroma_api_impl = "chromadb.api.fastapi.FastAPI"
else:
if path is None:
path = "db"
self.settings.persist_directory = path
self.settings.is_persistent = True
self.client = chromadb.Client(self.settings)
self.collection = self.create_col(collection_name)
def _parse_output(self, data):
"""
Parse the output data.
Args:
data (dict): Output data.
Returns:
list: Parsed output data.
"""
keys = ['ids', 'distances', 'metadatas']
values = []
for key in keys:
value = data.get(key, [])
if isinstance(value, list) and value and isinstance(value[0], list):
value = value[0]
values.append(value)
ids, distances, metadatas = values
max_length = max(len(v) for v in values if isinstance(v, list) and v is not None)
result = []
for i in range(max_length):
entry = OutputData(
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
score=distances[i] if isinstance(distances, list) and distances and i < len(distances) else None,
payload=metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None,
)
result.append(entry)
return result
def create_col(self, name, embedding_fn=None):
"""
Create a new collection.
Args:
name (str): Name of the collection.
embedding_fn (function): Embedding function to use. Defaults to None.
"""
# Skip creating collection if already exists
collections = self.list_cols()
for collection in collections:
if collection.name == name:
logging.debug(f"Collection {name} already exists. Skipping creation.")
collection = self.client.get_or_create_collection(
name=name,
embedding_function=embedding_fn,
)
return collection
def insert(self, name, vectors, payloads=None, ids=None):
"""
Insert vectors into a collection.
Args:
name (str): Name of the collection.
vectors (list): List of vectors to insert.
payloads (list, optional): List of payloads corresponding to vectors. Defaults to None.
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
"""
self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads)
def search(self, name, query, limit=5, filters=None):
"""
Search for similar vectors.
Args:
name (str): Name of the collection.
query (list): Query vector.
limit (int, optional): Number of results to return. Defaults to 5.
filters (dict, optional): Filters to apply to the search. Defaults to None.
Returns:
list: Search results.
"""
results = self.collection.query(query_embeddings=query, where=filters, n_results=limit)
final_results = self._parse_output(results)
return final_results
def delete(self, name, vector_id):
"""
Delete a vector by ID.
Args:
name (str): Name of the collection.
vector_id (int): ID of the vector to delete.
"""
self.collection.delete(ids=vector_id)
def update(self, name, vector_id, vector=None, payload=None):
"""
Update a vector and its payload.
Args:
name (str): Name of the collection.
vector_id (int): ID of the vector to update.
vector (list, optional): Updated vector. Defaults to None.
payload (dict, optional): Updated payload. Defaults to None.
"""
self.collection.update(ids=vector_id, embeddings=vector, metadatas=payload)
def get(self, name, vector_id):
"""
Retrieve a vector by ID.
Args:
name (str): Name of the collection.
vector_id (int): ID of the vector to retrieve.
Returns:
dict: Retrieved vector.
"""
result = self.collection.get(ids=[vector_id])
return self._parse_output(result)[0]
def list_cols(self):
"""
List all collections.
Returns:
list: List of collection names.
"""
return self.client.list_collections()
def delete_col(self, name):
"""
Delete a collection.
Args:
name (str): Name of the collection to delete.
"""
self.client.delete_collection(name=name)
def col_info(self, name):
"""
Get information about a collection.
Args:
name (str): Name of the collection.
Returns:
dict: Collection information.
"""
return self.client.get_collection(name=name)
def list(self, name, filters=None, limit=100):
"""
List all vectors in a collection.
Args:
name (str): Name of the collection.
filters (dict, optional): Filters to apply to the list.
limit (int, optional): Number of vectors to return. Defaults to 100.
Returns:
list: List of vectors.
"""
array = [[0 for _ in range(1536)] for _ in range(1536)]
results = self.collection.query(query_embeddings=array, where=filters, n_results=limit)
return [self._parse_output(results)]