Files
t6_mem0/embedchain/llm/together.py
2024-07-04 11:40:56 -07:00

72 lines
3.0 KiB
Python

import importlib
import os
from typing import Any, Optional
try:
from langchain_together import ChatTogether
except ImportError:
raise ImportError(
"Please install the langchain_together package by running `pip install langchain_together==0.1.3`."
)
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class TogetherLlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
try:
importlib.import_module("together")
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The required dependencies for Together are not installed."
'Please install with `pip install --upgrade "embedchain[together]"`'
) from None
super().__init__(config=config)
if not self.config.api_key and "TOGETHER_API_KEY" not in os.environ:
raise ValueError("Please set the TOGETHER_API_KEY environment variable or pass it in the config.")
def get_llm_model_answer(self, prompt) -> tuple[str, Optional[dict[str, Any]]]:
if self.config.system_prompt:
raise ValueError("TogetherLlm does not support `system_prompt`")
if self.config.token_usage:
response, token_info = self._get_answer(prompt, self.config)
model_name = "together/" + self.config.model
if model_name not in self.config.model_pricing_map:
raise ValueError(
f"Model {model_name} not found in `model_prices_and_context_window.json`. \
You can disable token usage by setting `token_usage` to False."
)
total_cost = (
self.config.model_pricing_map[model_name]["input_cost_per_token"] * token_info["prompt_tokens"]
) + self.config.model_pricing_map[model_name]["output_cost_per_token"] * token_info["completion_tokens"]
response_token_info = {
"prompt_tokens": token_info["prompt_tokens"],
"completion_tokens": token_info["completion_tokens"],
"total_tokens": token_info["prompt_tokens"] + token_info["completion_tokens"],
"total_cost": round(total_cost, 10),
"cost_currency": "USD",
}
return response, response_token_info
return self._get_answer(prompt, self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
api_key = config.api_key or os.environ["TOGETHER_API_KEY"]
kwargs = {
"model_name": config.model or "mixtral-8x7b-32768",
"temperature": config.temperature,
"max_tokens": config.max_tokens,
"together_api_key": api_key,
}
chat = ChatTogether(**kwargs)
chat_response = chat.invoke(prompt)
if config.token_usage:
return chat_response.content, chat_response.response_metadata["token_usage"]
return chat_response.content