Files
t6_mem0/embedchain/deployment/streamlit.io/app.py
2023-12-29 16:52:41 +05:30

60 lines
1.9 KiB
Python

import streamlit as st
from embedchain import App
@st.cache_resource
def embedchain_bot():
return App()
st.title("💬 Chatbot")
st.caption("🚀 An Embedchain app powered by OpenAI!")
if "messages" not in st.session_state:
st.session_state.messages = [
{
"role": "assistant",
"content": """
Hi! I'm a chatbot. I can answer questions and learn new things!\n
Ask me anything and if you want me to learn something do `/add <source>`.\n
I can learn mostly everything. :)
""",
}
]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask me anything!"):
app = embedchain_bot()
if prompt.startswith("/add"):
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
prompt = prompt.replace("/add", "").strip()
with st.chat_message("assistant"):
message_placeholder = st.empty()
message_placeholder.markdown("Adding to knowledge base...")
app.add(prompt)
message_placeholder.markdown(f"Added {prompt} to knowledge base!")
st.session_state.messages.append({"role": "assistant", "content": f"Added {prompt} to knowledge base!"})
st.stop()
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
msg_placeholder = st.empty()
msg_placeholder.markdown("Thinking...")
full_response = ""
for response in app.chat(prompt):
msg_placeholder.empty()
full_response += response
msg_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})