30 lines
899 B
Python
30 lines
899 B
Python
import ollama
|
|
from mem0.llms.base import LLMBase
|
|
|
|
|
|
class OllamaLLM(LLMBase):
|
|
def __init__(self, model="llama3"):
|
|
self.model = model
|
|
self._ensure_model_exists()
|
|
|
|
def _ensure_model_exists(self):
|
|
"""
|
|
Ensure the specified model exists locally. If not, pull it from Ollama.
|
|
"""
|
|
model_list = [m["name"] for m in ollama.list()["models"]]
|
|
if not any(m.startswith(self.model) for m in model_list):
|
|
ollama.pull(self.model)
|
|
|
|
def generate_response(self, messages):
|
|
"""
|
|
Generate a response based on the given messages using Ollama.
|
|
|
|
Args:
|
|
messages (list): List of message dicts containing 'role' and 'content'.
|
|
|
|
Returns:
|
|
str: The generated response.
|
|
"""
|
|
response = ollama.chat(model=self.model, messages=messages)
|
|
return response["message"]["content"]
|