Files
t6_mem0/embedchain/apps/Llama2App.py
2023-09-29 03:24:42 +05:30

34 lines
1.2 KiB
Python

from typing import Optional
from embedchain.apps.custom_app import CustomApp
from embedchain.config import CustomAppConfig
from embedchain.embedder.openai import OpenAIEmbedder
from embedchain.helper.json_serializable import register_deserializable
from embedchain.llm.llama2 import Llama2Llm
from embedchain.vectordb.chroma import ChromaDB
@register_deserializable
class Llama2App(CustomApp):
"""
The EmbedChain Llama2App class.
Methods:
add(source, data_type): adds the data from the given URL to the vector db.
query(query): finds answer to the given query using vector database and LLM.
chat(query): finds answer to the given query using vector database and LLM, with conversation history.
"""
def __init__(self, config: CustomAppConfig = None, system_prompt: Optional[str] = None):
"""
:param config: CustomAppConfig instance to load as configuration. Optional.
:param system_prompt: System prompt string. Optional.
"""
if config is None:
config = CustomAppConfig()
super().__init__(
config=config, llm=Llama2Llm(), db=ChromaDB(), embedder=OpenAIEmbedder(), system_prompt=system_prompt
)