Files
t6_mem0/mem0/memory/graph_memory.py
2024-09-30 16:55:01 -07:00

362 lines
14 KiB
Python

import logging
from langchain_community.graphs import Neo4jGraph
from rank_bm25 import BM25Okapi
from mem0.graphs.tools import (
ADD_MEMORY_STRUCT_TOOL_GRAPH,
ADD_MEMORY_TOOL_GRAPH,
ADD_MESSAGE_STRUCT_TOOL,
ADD_MESSAGE_TOOL,
NOOP_STRUCT_TOOL,
NOOP_TOOL,
SEARCH_STRUCT_TOOL,
SEARCH_TOOL,
UPDATE_MEMORY_STRUCT_TOOL_GRAPH,
UPDATE_MEMORY_TOOL_GRAPH,
)
from mem0.graphs.utils import EXTRACT_ENTITIES_PROMPT, get_update_memory_messages
from mem0.utils.factory import EmbedderFactory, LlmFactory
logger = logging.getLogger(__name__)
class MemoryGraph:
def __init__(self, config):
self.config = config
self.graph = Neo4jGraph(
self.config.graph_store.config.url,
self.config.graph_store.config.username,
self.config.graph_store.config.password,
)
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider, self.config.embedder.config)
self.llm_provider = "openai_structured"
if self.config.llm.provider:
self.llm_provider = self.config.llm.provider
if self.config.graph_store.llm:
self.llm_provider = self.config.graph_store.llm.provider
self.llm = LlmFactory.create(self.llm_provider, self.config.llm.config)
self.user_id = None
self.threshold = 0.7
def add(self, data, filters):
"""
Adds data to the graph.
Args:
data (str): The data to add to the graph.
filters (dict): A dictionary containing filters to be applied during the addition.
"""
# retrieve the search results
search_output = self._search(data, filters)
if self.config.graph_store.custom_prompt:
messages = [
{
"role": "system",
"content": EXTRACT_ENTITIES_PROMPT.replace("USER_ID", self.user_id).replace(
"CUSTOM_PROMPT", f"4. {self.config.graph_store.custom_prompt}"
),
},
{"role": "user", "content": data},
]
else:
messages = [
{
"role": "system",
"content": EXTRACT_ENTITIES_PROMPT.replace("USER_ID", self.user_id),
},
{"role": "user", "content": data},
]
_tools = [ADD_MESSAGE_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [ADD_MESSAGE_STRUCT_TOOL]
extracted_entities = self.llm.generate_response(
messages=messages,
tools=_tools,
)
if extracted_entities["tool_calls"]:
extracted_entities = extracted_entities["tool_calls"][0]["arguments"]["entities"]
else:
extracted_entities = []
logger.debug(f"Extracted entities: {extracted_entities}")
update_memory_prompt = get_update_memory_messages(search_output, extracted_entities)
_tools = [UPDATE_MEMORY_TOOL_GRAPH, ADD_MEMORY_TOOL_GRAPH, NOOP_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [
UPDATE_MEMORY_STRUCT_TOOL_GRAPH,
ADD_MEMORY_STRUCT_TOOL_GRAPH,
NOOP_STRUCT_TOOL,
]
memory_updates = self.llm.generate_response(
messages=update_memory_prompt,
tools=_tools,
)
to_be_added = []
for item in memory_updates["tool_calls"]:
if item["name"] == "add_graph_memory":
to_be_added.append(item["arguments"])
elif item["name"] == "update_graph_memory":
self._update_relationship(
item["arguments"]["source"],
item["arguments"]["destination"],
item["arguments"]["relationship"],
filters,
)
elif item["name"] == "noop":
continue
returned_entities = []
for item in to_be_added:
source = item["source"].lower().replace(" ", "_")
source_type = item["source_type"].lower().replace(" ", "_")
relation = item["relationship"].lower().replace(" ", "_")
destination = item["destination"].lower().replace(" ", "_")
destination_type = item["destination_type"].lower().replace(" ", "_")
returned_entities.append({"source": source, "relationship": relation, "target": destination})
# Create embeddings
source_embedding = self.embedding_model.embed(source)
dest_embedding = self.embedding_model.embed(destination)
# Updated Cypher query to include node types and embeddings
cypher = f"""
MERGE (n:{source_type} {{name: $source_name, user_id: $user_id}})
ON CREATE SET n.created = timestamp(), n.embedding = $source_embedding
ON MATCH SET n.embedding = $source_embedding
MERGE (m:{destination_type} {{name: $dest_name, user_id: $user_id}})
ON CREATE SET m.created = timestamp(), m.embedding = $dest_embedding
ON MATCH SET m.embedding = $dest_embedding
MERGE (n)-[rel:{relation}]->(m)
ON CREATE SET rel.created = timestamp()
RETURN n, rel, m
"""
params = {
"source_name": source,
"dest_name": destination,
"source_embedding": source_embedding,
"dest_embedding": dest_embedding,
"user_id": filters["user_id"],
}
_ = self.graph.query(cypher, params=params)
logger.info(f"Added {len(to_be_added)} new memories to the graph")
return returned_entities
def _search(self, query, filters, limit=100):
_tools = [SEARCH_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [SEARCH_STRUCT_TOOL]
search_results = self.llm.generate_response(
messages=[
{
"role": "system",
"content": f"You are a smart assistant who understands the entities, their types, and relations in a given text. If user message contains self reference such as 'I', 'me', 'my' etc. then use {filters['user_id']} as the source node. Extract the entities.",
},
{"role": "user", "content": query},
],
tools=_tools,
)
node_list = []
relation_list = []
for item in search_results["tool_calls"]:
if item["name"] == "search":
try:
node_list.extend(item["arguments"]["nodes"])
except Exception as e:
logger.error(f"Error in search tool: {e}")
node_list = list(set(node_list))
relation_list = list(set(relation_list))
node_list = [node.lower().replace(" ", "_") for node in node_list]
relation_list = [relation.lower().replace(" ", "_") for relation in relation_list]
logger.debug(f"Node list for search query : {node_list}")
result_relations = []
for node in node_list:
n_embedding = self.embedding_model.embed(node)
cypher_query = """
MATCH (n)
WHERE n.embedding IS NOT NULL AND n.user_id = $user_id
WITH n,
round(reduce(dot = 0.0, i IN range(0, size(n.embedding)-1) | dot + n.embedding[i] * $n_embedding[i]) /
(sqrt(reduce(l2 = 0.0, i IN range(0, size(n.embedding)-1) | l2 + n.embedding[i] * n.embedding[i])) *
sqrt(reduce(l2 = 0.0, i IN range(0, size($n_embedding)-1) | l2 + $n_embedding[i] * $n_embedding[i]))), 4) AS similarity
WHERE similarity >= $threshold
MATCH (n)-[r]->(m)
RETURN n.name AS source, elementId(n) AS source_id, type(r) AS relation, elementId(r) AS relation_id, m.name AS destination, elementId(m) AS destination_id, similarity
UNION
MATCH (n)
WHERE n.embedding IS NOT NULL AND n.user_id = $user_id
WITH n,
round(reduce(dot = 0.0, i IN range(0, size(n.embedding)-1) | dot + n.embedding[i] * $n_embedding[i]) /
(sqrt(reduce(l2 = 0.0, i IN range(0, size(n.embedding)-1) | l2 + n.embedding[i] * n.embedding[i])) *
sqrt(reduce(l2 = 0.0, i IN range(0, size($n_embedding)-1) | l2 + $n_embedding[i] * $n_embedding[i]))), 4) AS similarity
WHERE similarity >= $threshold
MATCH (m)-[r]->(n)
RETURN m.name AS source, elementId(m) AS source_id, type(r) AS relation, elementId(r) AS relation_id, n.name AS destination, elementId(n) AS destination_id, similarity
ORDER BY similarity DESC
LIMIT $limit
"""
params = {
"n_embedding": n_embedding,
"threshold": self.threshold,
"user_id": filters["user_id"],
"limit": limit,
}
ans = self.graph.query(cypher_query, params=params)
result_relations.extend(ans)
return result_relations
def search(self, query, filters, limit=100):
"""
Search for memories and related graph data.
Args:
query (str): Query to search for.
filters (dict): A dictionary containing filters to be applied during the search.
limit (int): The maximum number of nodes and relationships to retrieve. Defaults to 100.
Returns:
dict: A dictionary containing:
- "contexts": List of search results from the base data store.
- "entities": List of related graph data based on the query.
"""
search_output = self._search(query, filters, limit)
if not search_output:
return []
search_outputs_sequence = [[item["source"], item["relation"], item["destination"]] for item in search_output]
bm25 = BM25Okapi(search_outputs_sequence)
tokenized_query = query.split(" ")
reranked_results = bm25.get_top_n(tokenized_query, search_outputs_sequence, n=5)
search_results = []
for item in reranked_results:
search_results.append({"source": item[0], "relationship": item[1], "target": item[2]})
logger.info(f"Returned {len(search_results)} search results")
return search_results
def delete_all(self, filters):
cypher = """
MATCH (n {user_id: $user_id})
DETACH DELETE n
"""
params = {"user_id": filters["user_id"]}
self.graph.query(cypher, params=params)
def get_all(self, filters, limit=100):
"""
Retrieves all nodes and relationships from the graph database based on optional filtering criteria.
Args:
filters (dict): A dictionary containing filters to be applied during the retrieval.
limit (int): The maximum number of nodes and relationships to retrieve. Defaults to 100.
Returns:
list: A list of dictionaries, each containing:
- 'contexts': The base data store response for each memory.
- 'entities': A list of strings representing the nodes and relationships
"""
# return all nodes and relationships
query = """
MATCH (n {user_id: $user_id})-[r]->(m {user_id: $user_id})
RETURN n.name AS source, type(r) AS relationship, m.name AS target
LIMIT $limit
"""
results = self.graph.query(query, params={"user_id": filters["user_id"], "limit": limit})
final_results = []
for result in results:
final_results.append(
{
"source": result["source"],
"relationship": result["relationship"],
"target": result["target"],
}
)
logger.info(f"Retrieved {len(final_results)} relationships")
return final_results
def _update_relationship(self, source, target, relationship, filters):
"""
Update or create a relationship between two nodes in the graph.
Args:
source (str): The name of the source node.
target (str): The name of the target node.
relationship (str): The type of the relationship.
filters (dict): A dictionary containing filters to be applied during the update.
Raises:
Exception: If the operation fails.
"""
logger.info(f"Updating relationship: {source} -{relationship}-> {target}")
relationship = relationship.lower().replace(" ", "_")
# Check if nodes exist and create them if they don't
check_and_create_query = """
MERGE (n1 {name: $source, user_id: $user_id})
MERGE (n2 {name: $target, user_id: $user_id})
"""
self.graph.query(
check_and_create_query,
params={"source": source, "target": target, "user_id": filters["user_id"]},
)
# Delete any existing relationship between the nodes
delete_query = """
MATCH (n1 {name: $source, user_id: $user_id})-[r]->(n2 {name: $target, user_id: $user_id})
DELETE r
"""
self.graph.query(
delete_query,
params={"source": source, "target": target, "user_id": filters["user_id"]},
)
# Create the new relationship
create_query = f"""
MATCH (n1 {{name: $source, user_id: $user_id}}), (n2 {{name: $target, user_id: $user_id}})
CREATE (n1)-[r:{relationship}]->(n2)
RETURN n1, r, n2
"""
result = self.graph.query(
create_query,
params={"source": source, "target": target, "user_id": filters["user_id"]},
)
if not result:
raise Exception(f"Failed to update or create relationship between {source} and {target}")