Files
t6_mem0/notebooks/pinecone.ipynb
2023-10-29 23:06:43 -07:00

191 lines
4.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "b02n_zJ_hl3d"
},
"source": [
"## Cookbook for using PineconeDB with Embedchain"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gyJ6ui2vhtMY"
},
"source": [
"### Step-1: Install embedchain package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-NbXjAdlh0vJ"
},
"outputs": [],
"source": [
"!pip install embedchain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install embedchain[dataloaders]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nGnpSYAAh2bQ"
},
"source": [
"### Step-2: Set environment variables needed for Pinecone and install the dependencies.\n",
"\n",
"You can find this env variable on your [OpenAI dashboard](https://platform.openai.com/account/api-keys) and [Pinecone dashboard](https://app.pinecone.io/). Now lets install the dependencies needed for Pinecone."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-MUFRfxV7Jk7"
},
"outputs": [],
"source": [
"!pip install --upgrade 'embedchain[pinecone]'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0fBdQ9GAiRvK"
},
"outputs": [],
"source": [
"import os\n",
"from embedchain import Pipeline as App\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"sk-xxx\"\n",
"os.environ[\"PINECONE_API_KEY\"] = \"xxx\"\n",
"os.environ[\"PINECONE_ENV\"] = \"xxx\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ns6RhPfbiitr"
},
"source": [
"### Step-3: Define your Vector Database config"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "S9CkxVjriotB"
},
"outputs": [],
"source": [
"config = \"\"\"\n",
"vectordb:\n",
" provider: pinecone\n",
" config:\n",
" metric: cosine\n",
" vector_dimension: 768\n",
" collection_name: pc-index\n",
"\"\"\"\n",
"\n",
"# Write the multi-line string to a YAML file\n",
"with open('pinecone.yaml', 'w') as file:\n",
" file.write(config)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PGt6uPLIi1CS"
},
"source": [
"### Step-4 Create embedchain app based on the config"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Amzxk3m-i3tD"
},
"outputs": [],
"source": [
"app = App.from_config(yaml_path=\"pinecone.yaml\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XNXv4yZwi7ef"
},
"source": [
"### Step-5: Add data sources to your app"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Sn_0rx9QjIY9"
},
"outputs": [],
"source": [
"app.add(\"https://www.forbes.com/profile/elon-musk\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_7W6fDeAjMAP"
},
"source": [
"### Step-6: All set. Now start asking questions related to your data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cvIK7dWRjN_f"
},
"outputs": [],
"source": [
"while(True):\n",
" question = input(\"Enter question: \")\n",
" if question in ['q', 'exit', 'quit']:\n",
" break\n",
" answer = app.query(question)\n",
" print(answer)"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}