Files
t6_mem0/tests/llms/test_langchain.py
2025-04-07 11:28:30 +05:30

101 lines
3.4 KiB
Python

from unittest.mock import Mock, patch
import pytest
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.langchain import LangchainLLM
@pytest.fixture
def mock_langchain_model():
"""Mock a Langchain model for testing."""
with patch("langchain_openai.ChatOpenAI") as mock_chat_model:
mock_model = Mock()
mock_model.invoke.return_value = Mock(content="This is a test response")
mock_chat_model.return_value = mock_model
yield mock_model
def test_langchain_initialization():
"""Test that LangchainLLM initializes correctly with a valid provider."""
with patch("langchain_openai.ChatOpenAI") as mock_chat_model:
# Setup the mock model
mock_model = Mock()
mock_chat_model.return_value = mock_model
# Create a config with OpenAI provider
config = BaseLlmConfig(
model="gpt-3.5-turbo",
temperature=0.7,
max_tokens=100,
api_key="test-api-key",
langchain_provider="OpenAI"
)
# Initialize the LangchainLLM
llm = LangchainLLM(config)
# Verify the model was initialized with correct parameters
mock_chat_model.assert_called_once_with(
model="gpt-3.5-turbo",
temperature=0.7,
max_tokens=100,
api_key="test-api-key"
)
assert llm.langchain_model == mock_model
def test_generate_response(mock_langchain_model):
"""Test that generate_response correctly processes messages and returns a response."""
# Create a config with OpenAI provider
config = BaseLlmConfig(
model="gpt-3.5-turbo",
temperature=0.7,
max_tokens=100,
api_key="test-api-key",
langchain_provider="OpenAI"
)
# Initialize the LangchainLLM
with patch("langchain_openai.ChatOpenAI", return_value=mock_langchain_model):
llm = LangchainLLM(config)
# Create test messages
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing well! How can I help you?"},
{"role": "user", "content": "Tell me a joke."}
]
# Get response
response = llm.generate_response(messages)
# Verify the correct message format was passed to the model
expected_langchain_messages = [
("system", "You are a helpful assistant."),
("human", "Hello, how are you?"),
("ai", "I'm doing well! How can I help you?"),
("human", "Tell me a joke.")
]
mock_langchain_model.invoke.assert_called_once()
# Extract the first argument of the first call
actual_messages = mock_langchain_model.invoke.call_args[0][0]
assert actual_messages == expected_langchain_messages
assert response == "This is a test response"
def test_invalid_provider():
"""Test that LangchainLLM raises an error with an invalid provider."""
config = BaseLlmConfig(
model="test-model",
temperature=0.7,
max_tokens=100,
api_key="test-api-key",
langchain_provider="InvalidProvider"
)
with pytest.raises(ValueError, match="Invalid provider: InvalidProvider"):
LangchainLLM(config)