Files
t6_mem0/cookbooks/add_memory_using_qdrant_cloud.py
2024-09-16 17:39:54 -07:00

37 lines
988 B
Python

# This example shows how to use vector config to use QDRANT CLOUD
import os
from dotenv import load_dotenv
from mem0 import Memory
# Loading OpenAI API Key
load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
USER_ID = "test"
quadrant_host = "xx.gcp.cloud.qdrant.io"
# creating the config attributes
collection_name = "memory" # this is the collection I created in QDRANT cloud
api_key = os.environ.get("QDRANT_API_KEY") # Getting the QDRANT api KEY
host = quadrant_host
port = 6333 # Default port for QDRANT cloud
# Creating the config dict
config = {
"vector_store": {
"provider": "qdrant",
"config": {"collection_name": collection_name, "host": host, "port": port, "path": None, "api_key": api_key},
}
}
# this is the change, create the memory class using from config
memory = Memory().from_config(config)
USER_DATA = """
I am a strong believer in memory architecture.
"""
response = memory.add(USER_DATA, user_id=USER_ID)
print(response)