Files
t6_mem0/embedchain/loaders/discourse.py

78 lines
3.0 KiB
Python

import hashlib
import logging
import time
from typing import Any, Optional
import requests
from embedchain.loaders.base_loader import BaseLoader
from embedchain.utils.misc import clean_string
class DiscourseLoader(BaseLoader):
def __init__(self, config: Optional[dict[str, Any]] = None):
super().__init__()
if not config:
raise ValueError(
"DiscourseLoader requires a config. Check the documentation for the correct format - `https://docs.embedchain.ai/components/data-sources/discourse`" # noqa: E501
)
self.domain = config.get("domain")
if not self.domain:
raise ValueError(
"DiscourseLoader requires a domain. Check the documentation for the correct format - `https://docs.embedchain.ai/components/data-sources/discourse`" # noqa: E501
)
def _check_query(self, query):
if not query or not isinstance(query, str):
raise ValueError(
"DiscourseLoader requires a query. Check the documentation for the correct format - `https://docs.embedchain.ai/components/data-sources/discourse`" # noqa: E501
)
def _load_post(self, post_id):
post_url = f"{self.domain}posts/{post_id}.json"
response = requests.get(post_url)
try:
response.raise_for_status()
except Exception as e:
logging.error(f"Failed to load post {post_id}: {e}")
return
response_data = response.json()
post_contents = clean_string(response_data.get("raw"))
meta_data = {
"url": post_url,
"created_at": response_data.get("created_at", ""),
"username": response_data.get("username", ""),
"topic_slug": response_data.get("topic_slug", ""),
"score": response_data.get("score", ""),
}
data = {
"content": post_contents,
"meta_data": meta_data,
}
return data
def load_data(self, query):
self._check_query(query)
data = []
data_contents = []
logging.info(f"Searching data on discourse url: {self.domain}, for query: {query}")
search_url = f"{self.domain}search.json?q={query}"
response = requests.get(search_url)
try:
response.raise_for_status()
except Exception as e:
raise ValueError(f"Failed to search query {query}: {e}")
response_data = response.json()
post_ids = response_data.get("grouped_search_result").get("post_ids")
for id in post_ids:
post_data = self._load_post(id)
if post_data:
data.append(post_data)
data_contents.append(post_data.get("content"))
# Sleep for 0.4 sec, to avoid rate limiting. Check `https://meta.discourse.org/t/api-rate-limits/208405/6`
time.sleep(0.4)
doc_id = hashlib.sha256((query + ", ".join(data_contents)).encode()).hexdigest()
response_data = {"doc_id": doc_id, "data": data}
return response_data