70 lines
2.6 KiB
Python
70 lines
2.6 KiB
Python
import json
|
|
import os
|
|
from typing import Any, Callable, Dict, Optional, Type, Union
|
|
|
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
from langchain.schema import BaseMessage, HumanMessage, SystemMessage
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_openai import ChatOpenAI
|
|
from pydantic import BaseModel
|
|
|
|
from embedchain.config import BaseLlmConfig
|
|
from embedchain.helpers.json_serializable import register_deserializable
|
|
from embedchain.llm.base import BaseLlm
|
|
|
|
|
|
@register_deserializable
|
|
class OpenAILlm(BaseLlm):
|
|
def __init__(
|
|
self,
|
|
config: Optional[BaseLlmConfig] = None,
|
|
tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]] = None,
|
|
):
|
|
self.tools = tools
|
|
super().__init__(config=config)
|
|
|
|
def get_llm_model_answer(self, prompt) -> str:
|
|
response = self._get_answer(prompt, self.config)
|
|
return response
|
|
|
|
def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str:
|
|
messages = []
|
|
if config.system_prompt:
|
|
messages.append(SystemMessage(content=config.system_prompt))
|
|
messages.append(HumanMessage(content=prompt))
|
|
kwargs = {
|
|
"model": config.model or "gpt-3.5-turbo",
|
|
"temperature": config.temperature,
|
|
"max_tokens": config.max_tokens,
|
|
"model_kwargs": {},
|
|
}
|
|
api_key = config.api_key or os.environ["OPENAI_API_KEY"]
|
|
if config.top_p:
|
|
kwargs["model_kwargs"]["top_p"] = config.top_p
|
|
if config.stream:
|
|
callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
|
|
chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
|
|
else:
|
|
chat = ChatOpenAI(**kwargs, api_key=api_key)
|
|
if self.tools:
|
|
return self._query_function_call(chat, self.tools, messages)
|
|
|
|
return chat.invoke(messages).content
|
|
|
|
def _query_function_call(
|
|
self,
|
|
chat: ChatOpenAI,
|
|
tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]],
|
|
messages: list[BaseMessage],
|
|
) -> str:
|
|
from langchain.output_parsers.openai_tools import JsonOutputToolsParser
|
|
from langchain_core.utils.function_calling import \
|
|
convert_to_openai_tool
|
|
|
|
openai_tools = [convert_to_openai_tool(tools)]
|
|
chat = chat.bind(tools=openai_tools).pipe(JsonOutputToolsParser())
|
|
try:
|
|
return json.dumps(chat.invoke(messages)[0])
|
|
except IndexError:
|
|
return "Input could not be mapped to the function!"
|