Files
t6_mem0/docs/examples/aws_example.mdx
2025-07-01 01:21:53 -07:00

121 lines
3.2 KiB
Plaintext

---
title: AWS Bedrock and AOSS
---
<Snippet file="security-compliance.mdx" />
This example demonstrates how to configure and use the `mem0ai` SDK with **AWS Bedrock** and **OpenSearch Service (AOSS)** for persistent memory capabilities in Python.
## Installation
Install the required dependencies:
```bash
pip install mem0ai boto3 opensearch-py
```
## Environment Setup
Set your AWS environment variables:
```python
import os
# Set these in your environment or notebook
os.environ['AWS_REGION'] = 'us-west-2'
os.environ['AWS_ACCESS_KEY_ID'] = 'AK00000000000000000'
os.environ['AWS_SECRET_ACCESS_KEY'] = 'AS00000000000000000'
# Confirm they are set
print(os.environ['AWS_REGION'])
print(os.environ['AWS_ACCESS_KEY_ID'])
print(os.environ['AWS_SECRET_ACCESS_KEY'])
```
## Configuration and Usage
This sets up Mem0 with AWS Bedrock for embeddings and LLM, and OpenSearch as the vector store.
```python
import boto3
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth
from mem0.memory.main import Memory
region = 'us-west-2'
service = 'aoss'
credentials = boto3.Session().get_credentials()
auth = AWSV4SignerAuth(credentials, region, service)
config = {
"embedder": {
"provider": "aws_bedrock",
"config": {
"model": "amazon.titan-embed-text-v2:0"
}
},
"llm": {
"provider": "aws_bedrock",
"config": {
"model": "anthropic.claude-3-5-haiku-20241022-v1:0",
"temperature": 0.1,
"max_tokens": 2000
}
},
"vector_store": {
"provider": "opensearch",
"config": {
"collection_name": "mem0",
"host": "your-opensearch-domain.us-west-2.es.amazonaws.com",
"port": 443,
"http_auth": auth,
"embedding_model_dims": 1024,
"connection_class": RequestsHttpConnection,
"pool_maxsize": 20,
"use_ssl": True,
"verify_certs": True
}
}
}
# Initialize memory system
m = Memory.from_config(config)
```
## Usage
#### Add a memory:
```python
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
# Store inferred memories (default behavior)
result = m.add(messages, user_id="alice", metadata={"category": "movie_recommendations"})
```
#### Search a memory:
```python
relevant_memories = m.search(query, user_id="alice")
```
#### Get all memories:
```python
all_memories = m.get_all(user_id="alice")
```
#### Get a specific memory:
```python
memory = m.get(memory_id)
```
---
## Conclusion
With Mem0 and AWS services like Bedrock and OpenSearch, you can build intelligent AI companions that remember, adapt, and personalize their responses over time. This makes them ideal for long-term assistants, tutors, or support bots with persistent memory and natural conversation abilities.