Files
t6_mem0/embedchain/config/apps/custom_app_config.py
2023-09-27 02:36:58 +05:30

47 lines
1.8 KiB
Python

from typing import Optional
from dotenv import load_dotenv
from embedchain.helper.json_serializable import register_deserializable
from embedchain.vectordb.base import BaseVectorDB
from .base_app_config import BaseAppConfig
load_dotenv()
@register_deserializable
class CustomAppConfig(BaseAppConfig):
"""
Config to initialize an embedchain custom `App` instance, with extra config options.
"""
def __init__(
self,
log_level: str = "WARNING",
db: Optional[BaseVectorDB] = None,
id: Optional[str] = None,
collect_metrics: Optional[bool] = None,
collection_name: Optional[str] = None,
):
"""
Initializes a configuration class instance for an Custom App.
Most of the configuration is done in the `CustomApp` class itself.
:param log_level: Debug level ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], defaults to "WARNING"
:type log_level: str, optional
:param db: A database class. It is recommended to set this directly in the `CustomApp` class, not this config,
defaults to None
:type db: Optional[BaseVectorDB], optional
:param id: ID of the app. Document metadata will have this id., defaults to None
:type id: Optional[str], optional
:param collect_metrics: Send anonymous telemetry to improve embedchain, defaults to True
:type collect_metrics: Optional[bool], optional
:param collection_name: Default collection name. It's recommended to use app.db.set_collection_name() instead,
defaults to None
:type collection_name: Optional[str], optional
"""
super().__init__(
log_level=log_level, db=db, id=id, collect_metrics=collect_metrics, collection_name=collection_name
)