Files
t6_mem0/mem0/llms/azure_openai_structured.py
2025-03-19 21:29:36 +05:30

117 lines
4.0 KiB
Python

import json
import os
from typing import Dict, List, Optional
from openai import AzureOpenAI
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class AzureOpenAIStructuredLLM(LLMBase):
"""
A class for interacting with Azure OpenAI models using the specified configuration.
"""
def __init__(self, config: Optional[BaseLlmConfig] = None):
"""
Initializes the AzureOpenAIStructuredLLM instance with the given configuration.
Args:
config (Optional[BaseLlmConfig]): Configuration settings for the language model.
"""
super().__init__(config)
# Ensure model name is set; it should match the Azure OpenAI deployment name.
if not self.config.model:
self.config.model = "gpt-4o-2024-08-06"
api_key = (
os.getenv("LLM_AZURE_OPENAI_API_KEY") or self.config.azure_kwargs.api_key
)
azure_deployment = (
os.getenv("LLM_AZURE_DEPLOYMENT")
or self.config.azure_kwargs.azure_deployment
)
azure_endpoint = (
os.getenv("LLM_AZURE_ENDPOINT") or self.config.azure_kwargs.azure_endpoint
)
api_version = (
os.getenv("LLM_AZURE_API_VERSION") or self.config.azure_kwargs.api_version
)
default_headers = self.config.azure_kwargs.default_headers
self.client = AzureOpenAI(
azure_deployment=azure_deployment,
azure_endpoint=azure_endpoint,
api_version=api_version,
api_key=api_key,
http_client=self.config.http_client,
default_headers=default_headers,
)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": [],
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append(
{
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments),
}
)
return processed_response
else:
return response.choices[0].message.content
def generate_response(
self,
messages: List[Dict[str, str]],
response_format: Optional[str] = None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
) -> str:
"""
Generates a response using Azure OpenAI based on the provided messages.
Args:
messages (List[Dict[str, str]]): A list of dictionaries, each containing a 'role' and 'content' key.
response_format (Optional[str]): The desired format of the response. Defaults to None.
tools (Optional[List[Dict]]): A list of dictionaries, each containing a 'name' and 'arguments' key.
tool_choice (str): The choice of tool to use. Defaults to "auto".
Returns:
str: The generated response from the model.
"""
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if response_format:
params["response_format"] = response_format
if tools:
params["tools"] = tools
params["tool_choice"] = tool_choice
response = self.client.chat.completions.create(**params)
return self._parse_response(response, tools)