Files
t6_mem0/embedchain/llm/gpt4all.py

68 lines
2.6 KiB
Python

import os
from collections.abc import Iterable
from pathlib import Path
from typing import Optional, Union
from langchain.callbacks.stdout import StdOutCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class GPT4ALLLlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config=config)
if self.config.model is None:
self.config.model = "orca-mini-3b-gguf2-q4_0.gguf"
self.instance = GPT4ALLLlm._get_instance(self.config.model)
self.instance.streaming = self.config.stream
def get_llm_model_answer(self, prompt):
return self._get_answer(prompt=prompt, config=self.config)
@staticmethod
def _get_instance(model):
try:
from langchain.llms.gpt4all import GPT4All as LangchainGPT4All
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The GPT4All python package is not installed. Please install it with `pip install --upgrade embedchain[opensource]`" # noqa E501
) from None
model_path = Path(model).expanduser()
if os.path.isabs(model_path):
if os.path.exists(model_path):
return LangchainGPT4All(model=str(model_path))
else:
raise ValueError(f"Model does not exist at {model_path=}")
else:
return LangchainGPT4All(model=model, allow_download=True)
def _get_answer(self, prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]:
if config.model and config.model != self.config.model:
raise RuntimeError(
"GPT4ALLLlm does not support switching models at runtime. Please create a new app instance."
)
messages = []
if config.system_prompt:
messages.append(config.system_prompt)
messages.append(prompt)
kwargs = {
"temp": config.temperature,
"max_tokens": config.max_tokens,
}
if config.top_p:
kwargs["top_p"] = config.top_p
callbacks = [StreamingStdOutCallbackHandler()] if config.stream else [StdOutCallbackHandler()]
response = self.instance.generate(prompts=messages, callbacks=callbacks, **kwargs)
answer = ""
for generations in response.generations:
answer += " ".join(map(lambda generation: generation.text, generations))
return answer