Files
t6_mem0/embedchain/apps/Llama2App.py
2023-07-20 12:42:27 +05:30

37 lines
1.2 KiB
Python

import os
from langchain.llms import Replicate
from embedchain.config import AppConfig
from embedchain.embedchain import EmbedChain
class Llama2App(EmbedChain):
"""
The EmbedChain Llama2App class.
Has two functions: add and query.
adds(data_type, url): adds the data from the given URL to the vector db.
query(query): finds answer to the given query using vector database and LLM.
"""
def __init__(self, config: AppConfig = None):
"""
:param config: AppConfig instance to load as configuration. Optional.
"""
if "REPLICATE_API_TOKEN" not in os.environ:
raise ValueError("Please set the REPLICATE_API_TOKEN environment variable.")
if config is None:
config = AppConfig()
super().__init__(config)
def get_llm_model_answer(self, prompt, config: AppConfig = None):
# TODO: Move the model and other inputs into config
llm = Replicate(
model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5",
input={"temperature": 0.75, "max_length": 500, "top_p": 1},
)
return llm(prompt)