Files
t6_mem0/embedchain/vectordb/chroma.py
2023-09-12 12:13:53 +05:30

221 lines
7.8 KiB
Python

import logging
from typing import Dict, List, Optional, Any
from chromadb import Collection, QueryResult
from langchain.docstore.document import Document
from embedchain.config import ChromaDbConfig
from embedchain.helper.json_serializable import register_deserializable
from embedchain.vectordb.base import BaseVectorDB
try:
import chromadb
from chromadb.config import Settings
from chromadb.errors import InvalidDimensionException
except RuntimeError:
from embedchain.utils import use_pysqlite3
use_pysqlite3()
import chromadb
from chromadb.config import Settings
from chromadb.errors import InvalidDimensionException
@register_deserializable
class ChromaDB(BaseVectorDB):
"""Vector database using ChromaDB."""
def __init__(self, config: Optional[ChromaDbConfig] = None):
"""Initialize a new ChromaDB instance
:param config: Configuration options for Chroma, defaults to None
:type config: Optional[ChromaDbConfig], optional
"""
if config:
self.config = config
else:
self.config = ChromaDbConfig()
self.settings = Settings()
if self.config.chroma_settings:
for key, value in self.config.chroma_settings.items():
if hasattr(self.settings, key):
setattr(self.settings, key, value)
if self.config.host and self.config.port:
logging.info(f"Connecting to ChromaDB server: {self.config.host}:{self.config.port}")
self.settings.chroma_server_host = self.config.host
self.settings.chroma_server_http_port = self.config.port
self.settings.chroma_api_impl = "chromadb.api.fastapi.FastAPI"
else:
if self.config.dir is None:
self.config.dir = "db"
self.settings.persist_directory = self.config.dir
self.settings.is_persistent = True
self.client = chromadb.Client(self.settings)
super().__init__(config=self.config)
def _initialize(self):
"""
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
"""
if not self.embedder:
raise ValueError("Embedder not set. Please set an embedder with `set_embedder` before initialization.")
self._get_or_create_collection(self.config.collection_name)
def _get_or_create_db(self):
"""Called during initialization"""
return self.client
def _get_or_create_collection(self, name: str) -> Collection:
"""
Get or create a named collection.
:param name: Name of the collection
:type name: str
:raises ValueError: No embedder configured.
:return: Created collection
:rtype: Collection
"""
if not hasattr(self, "embedder") or not self.embedder:
raise ValueError("Cannot create a Chroma database collection without an embedder.")
self.collection = self.client.get_or_create_collection(
name=name,
embedding_function=self.embedder.embedding_fn,
)
return self.collection
def get(self, ids=None, where=None, limit=None):
"""
Get existing doc ids present in vector database
:param ids: list of doc ids to check for existence
:type ids: List[str]
:param where: Optional. to filter data
:type where: Dict[str, Any]
:return: Existing documents.
:rtype: List[str]
"""
args = {}
if ids:
args["ids"] = ids
if where:
args["where"] = where
if limit:
args["limit"] = limit
return self.collection.get(
**args
)
def get_advanced(self, where):
return self.collection.get(where=where, limit=1)
def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
"""
Add vectors to chroma database
:param documents: Documents
:type documents: List[str]
:param metadatas: Metadatas
:type metadatas: List[object]
:param ids: ids
:type ids: List[str]
"""
self.collection.add(documents=documents, metadatas=metadatas, ids=ids)
def _format_result(self, results: QueryResult) -> list[tuple[Document, float]]:
"""
Format Chroma results
:param results: ChromaDB query results to format.
:type results: QueryResult
:return: Formatted results
:rtype: list[tuple[Document, float]]
"""
return [
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
for result in zip(
results["documents"][0],
results["metadatas"][0],
results["distances"][0],
)
]
def query(self, input_query: List[str], n_results: int, where: Dict[str, Any]) -> List[str]:
"""
Query contents from vector data base based on vector similarity
:param input_query: list of query string
:type input_query: List[str]
:param n_results: no of similar documents to fetch from database
:type n_results: int
:param where: to filter data
:type where: Dict[str, Any]
:raises InvalidDimensionException: Dimensions do not match.
:return: The content of the document that matched your query.
:rtype: List[str]
"""
try:
result = self.collection.query(
query_texts=[
input_query,
],
n_results=n_results,
where=where,
)
except InvalidDimensionException as e:
raise InvalidDimensionException(
e.message()
+ ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501
) from None
results_formatted = self._format_result(result)
contents = [result[0].page_content for result in results_formatted]
return contents
def set_collection_name(self, name: str):
"""
Set the name of the collection. A collection is an isolated space for vectors.
:param name: Name of the collection.
:type name: str
"""
self.config.collection_name = name
self._get_or_create_collection(self.config.collection_name)
def count(self) -> int:
"""
Count number of documents/chunks embedded in the database.
:return: number of documents
:rtype: int
"""
return self.collection.count()
def delete(self, where):
return self.collection.delete(where=where)
def reset(self):
"""
Resets the database. Deletes all embeddings irreversibly.
"""
# Delete all data from the database
try:
self.client.reset()
except ValueError:
raise ValueError(
"For safety reasons, resetting is disabled."
'Please enable it by including `chromadb_settings={"allow_reset": True}` in your ChromaDbConfig'
) from None
# Recreate
self._get_or_create_collection(self.config.collection_name)
# Todo: Automatically recreating a collection with the same name cannot be the best way to handle a reset.
# A downside of this implementation is, if you have two instances,
# the other instance will not get the updated `self.collection` attribute.
# A better way would be to create the collection if it is called again after being reset.
# That means, checking if collection exists in the db-consuming methods, and creating it if it doesn't.
# That's an extra steps for all uses, just to satisfy a niche use case in a niche method. For now, this will do.