Files
t6_mem0/embedchain/vectordb/elasticsearch.py

250 lines
9.7 KiB
Python

import logging
from typing import Any, Dict, List, Optional, Tuple, Union
try:
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
except ImportError:
raise ImportError(
"Elasticsearch requires extra dependencies. Install with `pip install --upgrade embedchain[elasticsearch]`"
) from None
from embedchain.config import ElasticsearchDBConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.utils.misc import chunks
from embedchain.vectordb.base import BaseVectorDB
@register_deserializable
class ElasticsearchDB(BaseVectorDB):
"""
Elasticsearch as vector database
"""
BATCH_SIZE = 100
def __init__(
self,
config: Optional[ElasticsearchDBConfig] = None,
es_config: Optional[ElasticsearchDBConfig] = None, # Backwards compatibility
):
"""Elasticsearch as vector database.
:param config: Elasticsearch database config, defaults to None
:type config: ElasticsearchDBConfig, optional
:param es_config: `es_config` is supported as an alias for `config` (for backwards compatibility),
defaults to None
:type es_config: ElasticsearchDBConfig, optional
:raises ValueError: No config provided
"""
if config is None and es_config is None:
self.config = ElasticsearchDBConfig()
else:
if not isinstance(config, ElasticsearchDBConfig):
raise TypeError(
"config is not a `ElasticsearchDBConfig` instance. "
"Please make sure the type is right and that you are passing an instance."
)
self.config = config or es_config
if self.config.ES_URL:
self.client = Elasticsearch(self.config.ES_URL, **self.config.ES_EXTRA_PARAMS)
elif self.config.CLOUD_ID:
self.client = Elasticsearch(cloud_id=self.config.CLOUD_ID, **self.config.ES_EXTRA_PARAMS)
else:
raise ValueError(
"Something is wrong with your config. Please check again - `https://docs.embedchain.ai/components/vector-databases#elasticsearch`" # noqa: E501
)
# Call parent init here because embedder is needed
super().__init__(config=self.config)
def _initialize(self):
"""
This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
"""
logging.info(self.client.info())
index_settings = {
"mappings": {
"properties": {
"text": {"type": "text"},
"embeddings": {"type": "dense_vector", "index": False, "dims": self.embedder.vector_dimension},
}
}
}
es_index = self._get_index()
if not self.client.indices.exists(index=es_index):
# create index if not exist
print("Creating index", es_index, index_settings)
self.client.indices.create(index=es_index, body=index_settings)
def _get_or_create_db(self):
"""Called during initialization"""
return self.client
def _get_or_create_collection(self, name):
"""Note: nothing to return here. Discuss later"""
def get(self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None):
"""
Get existing doc ids present in vector database
:param ids: _list of doc ids to check for existence
:type ids: List[str]
:param where: to filter data
:type where: Dict[str, any]
:return: ids
:rtype: Set[str]
"""
if ids:
query = {"bool": {"must": [{"ids": {"values": ids}}]}}
else:
query = {"bool": {"must": []}}
if "app_id" in where:
app_id = where["app_id"]
query["bool"]["must"].append({"term": {"metadata.app_id": app_id}})
response = self.client.search(index=self._get_index(), query=query, _source=False, size=limit)
docs = response["hits"]["hits"]
ids = [doc["_id"] for doc in docs]
return {"ids": set(ids)}
def add(
self,
embeddings: List[List[float]],
documents: List[str],
metadatas: List[object],
ids: List[str],
**kwargs: Optional[Dict[str, any]],
) -> Any:
"""
add data in vector database
:param embeddings: list of embeddings to add
:type embeddings: List[List[str]]
:param documents: list of texts to add
:type documents: List[str]
:param metadatas: list of metadata associated with docs
:type metadatas: List[object]
:param ids: ids of docs
:type ids: List[str]
"""
embeddings = self.embedder.embedding_fn(documents)
for chunk in chunks(
list(zip(ids, documents, metadatas, embeddings)), self.BATCH_SIZE, desc="Inserting batches in elasticsearch"
): # noqa: E501
ids, docs, metadatas, embeddings = [], [], [], []
for id, text, metadata, embedding in chunk:
ids.append(id)
docs.append(text)
metadatas.append(metadata)
embeddings.append(embedding)
batch_docs = []
for id, text, metadata, embedding in zip(ids, docs, metadatas, embeddings):
batch_docs.append(
{
"_index": self._get_index(),
"_id": id,
"_source": {"text": text, "metadata": metadata, "embeddings": embedding},
}
)
bulk(self.client, batch_docs, **kwargs)
self.client.indices.refresh(index=self._get_index())
def query(
self,
input_query: List[str],
n_results: int,
where: Dict[str, any],
citations: bool = False,
**kwargs: Optional[Dict[str, Any]],
) -> Union[List[Tuple[str, Dict]], List[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: list of query string
:type input_query: List[str]
:param n_results: no of similar documents to fetch from database
:type n_results: int
:param where: Optional. to filter data
:type where: Dict[str, any]
:return: The context of the document that matched your query, url of the source, doc_id
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: List[str], if citations=False, otherwise List[Tuple[str, str, str]]
"""
input_query_vector = self.embedder.embedding_fn(input_query)
query_vector = input_query_vector[0]
# `https://www.elastic.co/guide/en/elasticsearch/reference/7.17/query-dsl-script-score-query.html`
query = {
"script_score": {
"query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
"script": {
"source": "cosineSimilarity(params.input_query_vector, 'embeddings') + 1.0",
"params": {"input_query_vector": query_vector},
},
}
}
if "app_id" in where:
app_id = where["app_id"]
query["script_score"]["query"] = {"match": {"metadata.app_id": app_id}}
_source = ["text", "metadata"]
response = self.client.search(index=self._get_index(), query=query, _source=_source, size=n_results)
docs = response["hits"]["hits"]
contexts = []
for doc in docs:
context = doc["_source"]["text"]
if citations:
metadata = doc["_source"]["metadata"]
metadata["score"] = doc["_score"]
contexts.append(tuple((context, metadata)))
else:
contexts.append(context)
return contexts
def set_collection_name(self, name: str):
"""
Set the name of the collection. A collection is an isolated space for vectors.
:param name: Name of the collection.
:type name: str
"""
if not isinstance(name, str):
raise TypeError("Collection name must be a string")
self.config.collection_name = name
def count(self) -> int:
"""
Count number of documents/chunks embedded in the database.
:return: number of documents
:rtype: int
"""
query = {"match_all": {}}
response = self.client.count(index=self._get_index(), query=query)
doc_count = response["count"]
return doc_count
def reset(self):
"""
Resets the database. Deletes all embeddings irreversibly.
"""
# Delete all data from the database
if self.client.indices.exists(index=self._get_index()):
# delete index in Es
self.client.indices.delete(index=self._get_index())
def _get_index(self) -> str:
"""Get the Elasticsearch index for a collection
:return: Elasticsearch index
:rtype: str
"""
# NOTE: The method is preferred to an attribute, because if collection name changes,
# it's always up-to-date.
return f"{self.config.collection_name}_{self.embedder.vector_dimension}".lower()