65 lines
2.2 KiB
Python
65 lines
2.2 KiB
Python
import importlib
|
|
import logging
|
|
import os
|
|
from typing import Any, Generator, Optional, Union
|
|
|
|
import google.generativeai as genai
|
|
|
|
from embedchain.config import BaseLlmConfig
|
|
from embedchain.helpers.json_serializable import register_deserializable
|
|
from embedchain.llm.base import BaseLlm
|
|
|
|
|
|
@register_deserializable
|
|
class GoogleLlm(BaseLlm):
|
|
def __init__(self, config: Optional[BaseLlmConfig] = None):
|
|
if "GOOGLE_API_KEY" not in os.environ:
|
|
raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
|
|
|
|
try:
|
|
importlib.import_module("google.generativeai")
|
|
except ModuleNotFoundError:
|
|
raise ModuleNotFoundError(
|
|
"The required dependencies for GoogleLlm are not installed."
|
|
'Please install with `pip install --upgrade "embedchain[google]"`'
|
|
) from None
|
|
|
|
super().__init__(config)
|
|
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
|
|
|
def get_llm_model_answer(self, prompt):
|
|
if self.config.system_prompt:
|
|
raise ValueError("GoogleLlm does not support `system_prompt`")
|
|
response = self._get_answer(prompt)
|
|
return response
|
|
|
|
def _get_answer(self, prompt: str) -> Union[str, Generator[Any, Any, None]]:
|
|
model_name = self.config.model or "gemini-pro"
|
|
logging.info(f"Using Google LLM model: {model_name}")
|
|
model = genai.GenerativeModel(model_name=model_name)
|
|
|
|
generation_config_params = {
|
|
"candidate_count": 1,
|
|
"max_output_tokens": self.config.max_tokens,
|
|
"temperature": self.config.temperature or 0.5,
|
|
}
|
|
|
|
if 0.0 <= self.config.top_p <= 1.0:
|
|
generation_config_params["top_p"] = self.config.top_p
|
|
else:
|
|
raise ValueError("`top_p` must be > 0.0 and < 1.0")
|
|
|
|
generation_config = genai.types.GenerationConfig(**generation_config_params)
|
|
|
|
response = model.generate_content(
|
|
prompt,
|
|
generation_config=generation_config,
|
|
stream=self.config.stream,
|
|
)
|
|
if self.config.stream:
|
|
# TODO: Implement streaming
|
|
response.resolve()
|
|
return response.text
|
|
else:
|
|
return response.text
|