30 lines
1.2 KiB
Python
30 lines
1.2 KiB
Python
from typing import Literal, Optional
|
|
|
|
from openai import OpenAI
|
|
|
|
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
|
from mem0.embeddings.base import EmbeddingBase
|
|
|
|
|
|
class LMStudioEmbedding(EmbeddingBase):
|
|
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
|
super().__init__(config)
|
|
|
|
self.config.model = self.config.model or "nomic-ai/nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.f16.gguf"
|
|
self.config.embedding_dims = self.config.embedding_dims or 1536
|
|
self.config.api_key = self.config.api_key or "lm-studio"
|
|
|
|
self.client = OpenAI(base_url=self.config.lmstudio_base_url, api_key=self.config.api_key)
|
|
|
|
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
|
|
"""
|
|
Get the embedding for the given text using LM Studio.
|
|
Args:
|
|
text (str): The text to embed.
|
|
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
|
|
Returns:
|
|
list: The embedding vector.
|
|
"""
|
|
text = text.replace("\n", " ")
|
|
return self.client.embeddings.create(input=[text], model=self.config.model).data[0].embedding
|