Files
t6_mem0/mem0/vector_stores/opensearch.py
2025-03-20 22:57:00 +05:30

202 lines
7.2 KiB
Python

import logging
from typing import Any, Dict, List, Optional
try:
from opensearchpy import OpenSearch, RequestsHttpConnection
from opensearchpy.helpers import bulk
except ImportError:
raise ImportError("OpenSearch requires extra dependencies. Install with `pip install opensearch-py`") from None
from pydantic import BaseModel
from mem0.configs.vector_stores.opensearch import OpenSearchConfig
from mem0.vector_stores.base import VectorStoreBase
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: str
score: float
payload: Dict
class OpenSearchDB(VectorStoreBase):
def __init__(self, **kwargs):
config = OpenSearchConfig(**kwargs)
# Initialize OpenSearch client
self.client = OpenSearch(
hosts=[{"host": config.host, "port": config.port or 9200}],
http_auth=config.http_auth
if config.http_auth
else ((config.user, config.password) if (config.user and config.password) else None),
use_ssl=config.use_ssl,
verify_certs=config.verify_certs,
connection_class=RequestsHttpConnection,
)
self.collection_name = config.collection_name
self.vector_dim = config.embedding_model_dims
# Create index only if auto_create_index is True
if config.auto_create_index:
self.create_index()
def create_index(self) -> None:
"""Create OpenSearch index with proper mappings if it doesn't exist."""
index_settings = {
"settings": {
"index": {"number_of_replicas": 1, "number_of_shards": 5, "refresh_interval": "1s", "knn": True}
},
"mappings": {
"properties": {
"text": {"type": "text"},
"vector": {
"type": "knn_vector",
"dimension": self.vector_dim,
"method": {"engine": "lucene", "name": "hnsw", "space_type": "cosinesimil"},
},
"metadata": {"type": "object", "properties": {"user_id": {"type": "keyword"}}},
}
},
}
if not self.client.indices.exists(index=self.collection_name):
self.client.indices.create(index=self.collection_name, body=index_settings)
logger.info(f"Created index {self.collection_name}")
else:
logger.info(f"Index {self.collection_name} already exists")
def create_col(self, name: str, vector_size: int) -> None:
"""Create a new collection (index in OpenSearch)."""
index_settings = {
"mappings": {
"properties": {
"vector": {
"type": "knn_vector",
"dimension": vector_size,
"method": {"engine": "lucene", "name": "hnsw", "space_type": "cosinesimil"},
},
"payload": {"type": "object"},
"id": {"type": "keyword"},
}
}
}
if not self.client.indices.exists(index=name):
self.client.indices.create(index=name, body=index_settings)
logger.info(f"Created index {name}")
def insert(
self, vectors: List[List[float]], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None
) -> List[OutputData]:
"""Insert vectors into the index."""
if not ids:
ids = [str(i) for i in range(len(vectors))]
if payloads is None:
payloads = [{} for _ in range(len(vectors))]
actions = []
for i, (vec, id_) in enumerate(zip(vectors, ids)):
action = {
"_index": self.collection_name,
"_id": id_,
"_source": {
"vector": vec,
"metadata": payloads[i], # Store metadata in the metadata field
},
}
actions.append(action)
bulk(self.client, actions)
results = []
for i, id_ in enumerate(ids):
results.append(OutputData(id=id_, score=1.0, payload=payloads[i]))
return results
def search(
self, query: str, vectors: List[float], limit: int = 5, filters: Optional[Dict] = None
) -> List[OutputData]:
"""Search for similar vectors using OpenSearch k-NN search with pre-filtering."""
search_query = {
"size": limit,
"query": {
"knn": {
"vector": {
"vector": vectors,
"k": limit,
}
}
},
}
if filters:
filter_conditions = [{"term": {f"metadata.{key}": value}} for key, value in filters.items()]
search_query["query"]["knn"]["vector"]["filter"] = {"bool": {"filter": filter_conditions}}
response = self.client.search(index=self.collection_name, body=search_query)
results = [
OutputData(id=hit["_id"], score=hit["_score"], payload=hit["_source"].get("metadata", {}))
for hit in response["hits"]["hits"]
]
return results
def delete(self, vector_id: str) -> None:
"""Delete a vector by ID."""
self.client.delete(index=self.collection_name, id=vector_id)
def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None) -> None:
"""Update a vector and its payload."""
doc = {}
if vector is not None:
doc["vector"] = vector
if payload is not None:
doc["metadata"] = payload
self.client.update(index=self.collection_name, id=vector_id, body={"doc": doc})
def get(self, vector_id: str) -> Optional[OutputData]:
"""Retrieve a vector by ID."""
try:
response = self.client.get(index=self.collection_name, id=vector_id)
return OutputData(id=response["_id"], score=1.0, payload=response["_source"].get("metadata", {}))
except Exception as e:
logger.error(f"Error retrieving vector {vector_id}: {e}")
return None
def list_cols(self) -> List[str]:
"""List all collections (indices)."""
return list(self.client.indices.get_alias().keys())
def delete_col(self) -> None:
"""Delete a collection (index)."""
self.client.indices.delete(index=self.collection_name)
def col_info(self, name: str) -> Any:
"""Get information about a collection (index)."""
return self.client.indices.get(index=name)
def list(self, filters: Optional[Dict] = None, limit: Optional[int] = None) -> List[List[OutputData]]:
"""List all memories."""
query = {"query": {"match_all": {}}}
if filters:
query["query"] = {
"bool": {"must": [{"term": {f"metadata.{key}": value}} for key, value in filters.items()]}
}
if limit:
query["size"] = limit
response = self.client.search(index=self.collection_name, body=query)
return [
[
OutputData(id=hit["_id"], score=1.0, payload=hit["_source"].get("metadata", {}))
for hit in response["hits"]["hits"]
]
]