30 lines
1.1 KiB
Python
30 lines
1.1 KiB
Python
from typing import Literal, Optional
|
|
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
|
from mem0.embeddings.base import EmbeddingBase
|
|
|
|
|
|
class HuggingFaceEmbedding(EmbeddingBase):
|
|
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
|
super().__init__(config)
|
|
|
|
self.config.model = self.config.model or "multi-qa-MiniLM-L6-cos-v1"
|
|
|
|
self.model = SentenceTransformer(self.config.model, **self.config.model_kwargs)
|
|
|
|
self.config.embedding_dims = self.config.embedding_dims or self.model.get_sentence_embedding_dimension()
|
|
|
|
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
|
|
"""
|
|
Get the embedding for the given text using Hugging Face.
|
|
|
|
Args:
|
|
text (str): The text to embed.
|
|
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
|
|
Returns:
|
|
list: The embedding vector.
|
|
"""
|
|
return self.model.encode(text, convert_to_numpy=True).tolist()
|