Files
t6_mem0/mem0/embeddings/huggingface.py
2025-02-28 15:59:34 +05:30

30 lines
1.1 KiB
Python

from typing import Literal, Optional
from sentence_transformers import SentenceTransformer
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class HuggingFaceEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
self.config.model = self.config.model or "multi-qa-MiniLM-L6-cos-v1"
self.model = SentenceTransformer(self.config.model, **self.config.model_kwargs)
self.config.embedding_dims = self.config.embedding_dims or self.model.get_sentence_embedding_dimension()
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Hugging Face.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
return self.model.encode(text, convert_to_numpy=True).tolist()