Files
t6_mem0/mem0/llms/sarvam.py
2025-05-26 23:19:37 +05:30

100 lines
3.5 KiB
Python

import os
import requests
from typing import Dict, List, Optional
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class SarvamLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
# Set default model if not provided
if not self.config.model:
self.config.model = "sarvam-m"
# Get API key from config or environment variable
self.api_key = self.config.api_key or os.getenv("SARVAM_API_KEY")
if not self.api_key:
raise ValueError(
"Sarvam API key is required. Set SARVAM_API_KEY environment variable "
"or provide api_key in config."
)
# Set base URL - use config value or environment or default
self.base_url = (
getattr(self.config, 'sarvam_base_url', None) or
os.getenv("SARVAM_API_BASE") or
"https://api.sarvam.ai/v1"
)
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None
) -> str:
"""
Generate a response based on the given messages using Sarvam-M.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response.
Currently not used by Sarvam API.
Returns:
str: The generated response.
"""
url = f"{self.base_url}/chat/completions"
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
# Prepare the request payload
params = {
"messages": messages,
"model": self.config.model if isinstance(self.config.model, str) else "sarvam-m",
}
# Add standard parameters that already exist in BaseLlmConfig
if self.config.temperature is not None:
params["temperature"] = self.config.temperature
if self.config.max_tokens is not None:
params["max_tokens"] = self.config.max_tokens
if self.config.top_p is not None:
params["top_p"] = self.config.top_p
# Handle Sarvam-specific parameters if model is passed as dict
if isinstance(self.config.model, dict):
# Extract model name
params["model"] = self.config.model.get("name", "sarvam-m")
# Add Sarvam-specific parameters
sarvam_specific_params = [
'reasoning_effort', 'frequency_penalty', 'presence_penalty',
'seed', 'stop', 'n'
]
for param in sarvam_specific_params:
if param in self.config.model:
params[param] = self.config.model[param]
try:
response = requests.post(url, headers=headers, json=params, timeout=30)
response.raise_for_status()
result = response.json()
if 'choices' in result and len(result['choices']) > 0:
return result['choices'][0]['message']['content']
else:
raise ValueError("No response choices found in Sarvam API response")
except requests.exceptions.RequestException as e:
raise RuntimeError(f"Sarvam API request failed: {e}")
except KeyError as e:
raise ValueError(f"Unexpected response format from Sarvam API: {e}")