Files
t6_mem0/embedchain/llm/vertex_ai.py
2024-07-04 11:40:56 -07:00

69 lines
3.0 KiB
Python

import importlib
import logging
from typing import Any, Optional
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_google_vertexai import ChatVertexAI
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
logger = logging.getLogger(__name__)
@register_deserializable
class VertexAILlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
try:
importlib.import_module("vertexai")
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The required dependencies for VertexAI are not installed."
'Please install with `pip install --upgrade "embedchain[vertexai]"`'
) from None
super().__init__(config=config)
def get_llm_model_answer(self, prompt) -> tuple[str, Optional[dict[str, Any]]]:
if self.config.token_usage:
response, token_info = self._get_answer(prompt, self.config)
model_name = "vertexai/" + self.config.model
if model_name not in self.config.model_pricing_map:
raise ValueError(
f"Model {model_name} not found in `model_prices_and_context_window.json`. \
You can disable token usage by setting `token_usage` to False."
)
total_cost = (
self.config.model_pricing_map[model_name]["input_cost_per_token"] * token_info["prompt_token_count"]
) + self.config.model_pricing_map[model_name]["output_cost_per_token"] * token_info[
"candidates_token_count"
]
response_token_info = {
"prompt_tokens": token_info["prompt_token_count"],
"completion_tokens": token_info["candidates_token_count"],
"total_tokens": token_info["prompt_token_count"] + token_info["candidates_token_count"],
"total_cost": round(total_cost, 10),
"cost_currency": "USD",
}
return response, response_token_info
return self._get_answer(prompt, self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
if config.top_p and config.top_p != 1:
logger.warning("Config option `top_p` is not supported by this model.")
if config.stream:
callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
llm = ChatVertexAI(
temperature=config.temperature, model=config.model, callbacks=callbacks, streaming=config.stream
)
else:
llm = ChatVertexAI(temperature=config.temperature, model=config.model)
messages = VertexAILlm._get_messages(prompt)
chat_response = llm.invoke(messages)
if config.token_usage:
return chat_response.content, chat_response.response_metadata["usage_metadata"]
return chat_response.content