Files
t6_mem0/embedchain/embedder/clarifai.py
2024-06-17 08:48:18 -07:00

53 lines
1.9 KiB
Python

import os
from typing import Optional, Union
from embedchain.config import BaseEmbedderConfig
from embedchain.embedder.base import BaseEmbedder
from chromadb import EmbeddingFunction, Embeddings
class ClarifaiEmbeddingFunction(EmbeddingFunction):
def __init__(self, config: BaseEmbedderConfig) -> None:
super().__init__()
try:
from clarifai.client.model import Model
from clarifai.client.input import Inputs
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The required dependencies for ClarifaiEmbeddingFunction are not installed."
'Please install with `pip install --upgrade "embedchain[clarifai]"`'
) from None
self.config = config
self.api_key = config.api_key or os.getenv("CLARIFAI_PAT")
self.model = config.model
self.model_obj = Model(url=self.model, pat=self.api_key)
self.input_obj = Inputs(pat=self.api_key)
def __call__(self, input: Union[str, list[str]]) -> Embeddings:
if isinstance(input, str):
input = [input]
batch_size = 32
embeddings = []
try:
for i in range(0, len(input), batch_size):
batch = input[i : i + batch_size]
input_batch = [
self.input_obj.get_text_input(input_id=str(id), raw_text=inp) for id, inp in enumerate(batch)
]
response = self.model_obj.predict(input_batch)
embeddings.extend([list(output.data.embeddings[0].vector) for output in response.outputs])
except Exception as e:
print(f"Predict failed, exception: {e}")
return embeddings
class ClarifaiEmbedder(BaseEmbedder):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
embedding_func = ClarifaiEmbeddingFunction(config=self.config)
self.set_embedding_fn(embedding_fn=embedding_func)