Files
t6_mem0/embedchain/config/apps/CustomAppConfig.py
2023-08-12 04:57:11 +05:30

140 lines
5.5 KiB
Python

from typing import Any, Optional
from chromadb.api.types import Documents, Embeddings
from dotenv import load_dotenv
from embedchain.config.vectordbs import ElasticsearchDBConfig
from embedchain.models import (EmbeddingFunctions, Providers, VectorDatabases,
VectorDimensions)
from .BaseAppConfig import BaseAppConfig
load_dotenv()
class CustomAppConfig(BaseAppConfig):
"""
Config to initialize an embedchain custom `App` instance, with extra config options.
"""
def __init__(
self,
log_level=None,
embedding_fn: EmbeddingFunctions = None,
embedding_fn_model=None,
db=None,
host=None,
port=None,
id=None,
collection_name=None,
provider: Providers = None,
open_source_app_config=None,
deployment_name=None,
collect_metrics: Optional[bool] = None,
db_type: VectorDatabases = None,
es_config: ElasticsearchDBConfig = None,
):
"""
:param log_level: Optional. (String) Debug level
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
:param embedding_fn: Optional. Embedding function to use.
:param embedding_fn_model: Optional. Model name to use for embedding function.
:param db: Optional. (Vector) database to use for embeddings.
:param host: Optional. Hostname for the database server.
:param port: Optional. Port for the database server.
:param id: Optional. ID of the app. Document metadata will have this id.
:param collection_name: Optional. Collection name for the database.
:param provider: Optional. (Providers): LLM Provider to use.
:param open_source_app_config: Optional. Config instance needed for open source apps.
:param collect_metrics: Defaults to True. Send anonymous telemetry to improve embedchain.
:param db_type: Optional. type of Vector database to use.
:param es_config: Optional. elasticsearch database config to be used for connection
"""
if provider:
self.provider = provider
else:
raise ValueError("CustomApp must have a provider assigned.")
self.open_source_app_config = open_source_app_config
super().__init__(
log_level=log_level,
embedding_fn=CustomAppConfig.embedding_function(
embedding_function=embedding_fn, model=embedding_fn_model, deployment_name=deployment_name
),
db=db,
host=host,
port=port,
id=id,
collection_name=collection_name,
collect_metrics=collect_metrics,
db_type=db_type,
vector_dim=CustomAppConfig.get_vector_dimension(embedding_function=embedding_fn),
es_config=es_config,
)
@staticmethod
def langchain_default_concept(embeddings: Any):
"""
Langchains default function layout for embeddings.
"""
def embed_function(texts: Documents) -> Embeddings:
return embeddings.embed_documents(texts)
return embed_function
@staticmethod
def embedding_function(embedding_function: EmbeddingFunctions, model: str = None, deployment_name: str = None):
if not isinstance(embedding_function, EmbeddingFunctions):
raise ValueError(
f"Invalid option: '{embedding_function}'. Expecting one of the following options: {list(map(lambda x: x.value, EmbeddingFunctions))}" # noqa: E501
)
if embedding_function == EmbeddingFunctions.OPENAI:
from langchain.embeddings import OpenAIEmbeddings
if model:
embeddings = OpenAIEmbeddings(model=model)
else:
if deployment_name:
embeddings = OpenAIEmbeddings(deployment=deployment_name)
else:
embeddings = OpenAIEmbeddings()
return CustomAppConfig.langchain_default_concept(embeddings)
elif embedding_function == EmbeddingFunctions.HUGGING_FACE:
from langchain.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name=model)
return CustomAppConfig.langchain_default_concept(embeddings)
elif embedding_function == EmbeddingFunctions.VERTEX_AI:
from langchain.embeddings import VertexAIEmbeddings
embeddings = VertexAIEmbeddings(model_name=model)
return CustomAppConfig.langchain_default_concept(embeddings)
elif embedding_function == EmbeddingFunctions.GPT4ALL:
# Note: We could use langchains GPT4ALL embedding, but it's not available in all versions.
from chromadb.utils import embedding_functions
return embedding_functions.SentenceTransformerEmbeddingFunction(model_name=model)
@staticmethod
def get_vector_dimension(embedding_function: EmbeddingFunctions):
if not isinstance(embedding_function, EmbeddingFunctions):
raise ValueError(f"Invalid option: '{embedding_function}'.")
if embedding_function == EmbeddingFunctions.OPENAI:
return VectorDimensions.OPENAI.value
elif embedding_function == EmbeddingFunctions.HUGGING_FACE:
return VectorDimensions.HUGGING_FACE.value
elif embedding_function == EmbeddingFunctions.VERTEX_AI:
return VectorDimensions.VERTEX_AI.value
elif embedding_function == EmbeddingFunctions.GPT4ALL:
return VectorDimensions.GPT4ALL.value