Files
t6_mem0/embedchain/config/apps/BaseAppConfig.py
2023-08-12 04:57:11 +05:30

99 lines
4.0 KiB
Python

import logging
from embedchain.config.BaseConfig import BaseConfig
from embedchain.config.vectordbs import ElasticsearchDBConfig
from embedchain.models import VectorDatabases, VectorDimensions
class BaseAppConfig(BaseConfig):
"""
Parent config to initialize an instance of `App`, `OpenSourceApp` or `CustomApp`.
"""
def __init__(
self,
log_level=None,
embedding_fn=None,
db=None,
host=None,
port=None,
id=None,
collection_name=None,
collect_metrics: bool = True,
db_type: VectorDatabases = None,
vector_dim: VectorDimensions = None,
es_config: ElasticsearchDBConfig = None,
):
"""
:param log_level: Optional. (String) Debug level
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
:param embedding_fn: Embedding function to use.
:param db: Optional. (Vector) database instance to use for embeddings.
:param host: Optional. Hostname for the database server.
:param port: Optional. Port for the database server.
:param id: Optional. ID of the app. Document metadata will have this id.
:param collection_name: Optional. Collection name for the database.
:param collect_metrics: Defaults to True. Send anonymous telemetry to improve embedchain.
:param db_type: Optional. type of Vector database to use
:param vector_dim: Vector dimension generated by embedding fn
:param es_config: Optional. elasticsearch database config to be used for connection
"""
self._setup_logging(log_level)
self.collection_name = collection_name if collection_name else "embedchain_store"
self.db = BaseAppConfig.get_db(
db=db,
embedding_fn=embedding_fn,
host=host,
port=port,
db_type=db_type,
vector_dim=vector_dim,
collection_name=self.collection_name,
es_config=es_config,
)
self.id = id
self.collect_metrics = True if (collect_metrics is True or collect_metrics is None) else False
return
@staticmethod
def get_db(db, embedding_fn, host, port, db_type, vector_dim, collection_name, es_config):
"""
Get db based on db_type, db with default database (`ChromaDb`)
:param Optional. (Vector) database to use for embeddings.
:param embedding_fn: Embedding function to use in database.
:param host: Optional. Hostname for the database server.
:param port: Optional. Port for the database server.
:param db_type: Optional. db type to use. Supported values (`es`, `chroma`)
:param vector_dim: Vector dimension generated by embedding fn
:param collection_name: Optional. Collection name for the database.
:param es_config: Optional. elasticsearch database config to be used for connection
:raises ValueError: BaseAppConfig knows no default embedding function.
:returns: database instance
"""
if db:
return db
if embedding_fn is None:
raise ValueError("ChromaDb cannot be instantiated without an embedding function")
if db_type == VectorDatabases.ELASTICSEARCH:
from embedchain.vectordb.elasticsearch_db import ElasticsearchDB
return ElasticsearchDB(
embedding_fn=embedding_fn, vector_dim=vector_dim, collection_name=collection_name, es_config=es_config
)
from embedchain.vectordb.chroma_db import ChromaDB
return ChromaDB(embedding_fn=embedding_fn, host=host, port=port)
def _setup_logging(self, debug_level):
level = logging.WARNING # Default level
if debug_level is not None:
level = getattr(logging, debug_level.upper(), None)
if not isinstance(level, int):
raise ValueError(f"Invalid log level: {debug_level}")
logging.basicConfig(format="%(asctime)s [%(name)s] [%(levelname)s] %(message)s", level=level)
self.logger = logging.getLogger(__name__)
return