Files
t6_mem0/embedchain/llm/base_llm.py
Dev Khant 129242534d Lint and formatting fixes (#554)
Co-authored-by: cachho <admin@ch-webdev.com>
Co-authored-by: Taranjeet Singh <reachtotj@gmail.com>
2023-09-06 04:24:19 +05:30

215 lines
8.4 KiB
Python

import logging
from typing import List, Optional
from langchain.memory import ConversationBufferMemory
from langchain.schema import BaseMessage
from embedchain.config import BaseLlmConfig
from embedchain.config.llm.base_llm_config import (
DEFAULT_PROMPT, DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE,
DOCS_SITE_PROMPT_TEMPLATE)
from embedchain.helper_classes.json_serializable import JSONSerializable
class BaseLlm(JSONSerializable):
def __init__(self, config: Optional[BaseLlmConfig] = None):
if config is None:
self.config = BaseLlmConfig()
else:
self.config = config
self.memory = ConversationBufferMemory()
self.is_docs_site_instance = False
self.online = False
self.history: any = None
def get_llm_model_answer(self):
"""
Usually implemented by child class
"""
raise NotImplementedError
def set_history(self, history: any):
self.history = history
def update_history(self):
chat_history = self.memory.load_memory_variables({})["history"]
if chat_history:
self.set_history(chat_history)
def generate_prompt(self, input_query, contexts, **kwargs):
"""
Generates a prompt based on the given query and context, ready to be
passed to an LLM
:param input_query: The query to use.
:param contexts: List of similar documents to the query used as context.
:param config: Optional. The `QueryConfig` instance to use as
configuration options.
:return: The prompt
"""
context_string = (" | ").join(contexts)
web_search_result = kwargs.get("web_search_result", "")
if web_search_result:
context_string = self._append_search_and_context(context_string, web_search_result)
if not self.history:
prompt = self.config.template.substitute(context=context_string, query=input_query)
else:
# check if it's the default template without history
if (
not self.config._validate_template_history(self.config.template)
and self.config.template.template == DEFAULT_PROMPT
):
# swap in the template with history
prompt = DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE.substitute(
context=context_string, query=input_query, history=self.history
)
elif not self.config._validate_template_history(self.config.template):
logging.warning("Template does not include `$history` key. History is not included in prompt.")
prompt = self.config.template.substitute(context=context_string, query=input_query)
else:
prompt = self.config.template.substitute(
context=context_string, query=input_query, history=self.history
)
return prompt
def _append_search_and_context(self, context, web_search_result):
return f"{context}\nWeb Search Result: {web_search_result}"
def get_answer_from_llm(self, prompt):
"""
Gets an answer based on the given query and context by passing it
to an LLM.
:param query: The query to use.
:param context: Similar documents to the query used as context.
:return: The answer.
"""
return self.get_llm_model_answer(prompt)
def access_search_and_get_results(self, input_query):
from langchain.tools import DuckDuckGoSearchRun
search = DuckDuckGoSearchRun()
logging.info(f"Access search to get answers for {input_query}")
return search.run(input_query)
def _stream_query_response(self, answer):
streamed_answer = ""
for chunk in answer:
streamed_answer = streamed_answer + chunk
yield chunk
logging.info(f"Answer: {streamed_answer}")
def _stream_chat_response(self, answer):
streamed_answer = ""
for chunk in answer:
streamed_answer = streamed_answer + chunk
yield chunk
self.memory.chat_memory.add_ai_message(streamed_answer)
logging.info(f"Answer: {streamed_answer}")
def query(self, input_query, contexts, config: BaseLlmConfig = None, dry_run=False, where=None):
"""
Queries the vector database based on the given input query.
Gets relevant doc based on the query and then passes it to an
LLM as context to get the answer.
:param input_query: The query to use.
:param config: Optional. The `LlmConfig` instance to use as configuration options.
This is used for one method call. To persistently use a config, declare it during app init.
:param dry_run: Optional. A dry run does everything except send the resulting prompt to
the LLM. The purpose is to test the prompt, not the response.
You can use it to test your prompt, including the context provided
by the vector database's doc retrieval.
The only thing the dry run does not consider is the cut-off due to
the `max_tokens` parameter.
:param where: Optional. A dictionary of key-value pairs to filter the database results.
:return: The answer to the query.
"""
query_config = config or self.config
if self.is_docs_site_instance:
query_config.template = DOCS_SITE_PROMPT_TEMPLATE
query_config.number_documents = 5
k = {}
if self.online:
k["web_search_result"] = self.access_search_and_get_results(input_query)
prompt = self.generate_prompt(input_query, contexts, **k)
logging.info(f"Prompt: {prompt}")
if dry_run:
return prompt
answer = self.get_answer_from_llm(prompt)
if isinstance(answer, str):
logging.info(f"Answer: {answer}")
return answer
else:
return self._stream_query_response(answer)
def chat(self, input_query, contexts, config: BaseLlmConfig = None, dry_run=False, where=None):
"""
Queries the vector database on the given input query.
Gets relevant doc based on the query and then passes it to an
LLM as context to get the answer.
Maintains the whole conversation in memory.
:param input_query: The query to use.
:param config: Optional. The `LlmConfig` instance to use as configuration options.
This is used for one method call. To persistently use a config, declare it during app init.
:param dry_run: Optional. A dry run does everything except send the resulting prompt to
the LLM. The purpose is to test the prompt, not the response.
You can use it to test your prompt, including the context provided
by the vector database's doc retrieval.
The only thing the dry run does not consider is the cut-off due to
the `max_tokens` parameter.
:param where: Optional. A dictionary of key-value pairs to filter the database results.
:return: The answer to the query.
"""
query_config = config or self.config
if self.is_docs_site_instance:
query_config.template = DOCS_SITE_PROMPT_TEMPLATE
query_config.number_documents = 5
k = {}
if self.online:
k["web_search_result"] = self.access_search_and_get_results(input_query)
self.update_history()
prompt = self.generate_prompt(input_query, contexts, **k)
logging.info(f"Prompt: {prompt}")
if dry_run:
return prompt
answer = self.get_answer_from_llm(prompt)
self.memory.chat_memory.add_user_message(input_query)
if isinstance(answer, str):
self.memory.chat_memory.add_ai_message(answer)
logging.info(f"Answer: {answer}")
# NOTE: Adding to history before and after. This could be seen as redundant.
# If we change it, we have to change the tests (no big deal).
self.update_history()
return answer
else:
# this is a streamed response and needs to be handled differently.
return self._stream_chat_response(answer)
@staticmethod
def _get_messages(prompt: str, system_prompt: Optional[str] = None) -> List[BaseMessage]:
from langchain.schema import HumanMessage, SystemMessage
messages = []
if system_prompt:
messages.append(SystemMessage(content=system_prompt))
messages.append(HumanMessage(content=prompt))
return messages