32 lines
776 B
Plaintext
32 lines
776 B
Plaintext
You can use embedding models from Huggingface to run Mem0 locally.
|
|
|
|
### Usage
|
|
|
|
```python
|
|
import os
|
|
from mem0 import Memory
|
|
|
|
os.environ["OPENAI_API_KEY"] = "your_api_key"
|
|
|
|
config = {
|
|
"embedder": {
|
|
"provider": "huggingface",
|
|
"config": {
|
|
"model": "multi-qa-MiniLM-L6-cos-v1"
|
|
}
|
|
}
|
|
}
|
|
|
|
m = Memory.from_config(config)
|
|
m.add("I'm visiting Paris", user_id="john")
|
|
```
|
|
|
|
### Config
|
|
|
|
Here are the parameters available for configuring Huggingface embedder:
|
|
|
|
| Parameter | Description | Default Value |
|
|
| --- | --- | --- |
|
|
| `model` | The name of the model to use | `multi-qa-MiniLM-L6-cos-v1` |
|
|
| `embedding_dims` | Dimensions of the embedding model | `selected_model_dimensions` |
|
|
| `model_kwargs` | Additional arguments for the model | `None` | |