64 lines
2.1 KiB
Python
64 lines
2.1 KiB
Python
from typing import Optional
|
|
|
|
import openai
|
|
|
|
from embedchain.config import AppConfig, ChatConfig
|
|
from embedchain.embedchain import EmbedChain
|
|
from embedchain.helper_classes.json_serializable import register_deserializable
|
|
|
|
|
|
@register_deserializable
|
|
class App(EmbedChain):
|
|
"""
|
|
The EmbedChain app.
|
|
Has two functions: add and query.
|
|
|
|
adds(data_type, url): adds the data from the given URL to the vector db.
|
|
query(query): finds answer to the given query using vector database and LLM.
|
|
dry_run(query): test your prompt without consuming tokens.
|
|
"""
|
|
|
|
def __init__(self, config: AppConfig = None, system_prompt: Optional[str] = None):
|
|
"""
|
|
:param config: AppConfig instance to load as configuration. Optional.
|
|
:param system_prompt: System prompt string. Optional.
|
|
"""
|
|
if config is None:
|
|
config = AppConfig()
|
|
|
|
super().__init__(config, system_prompt)
|
|
|
|
def get_llm_model_answer(self, prompt, config: ChatConfig):
|
|
messages = []
|
|
system_prompt = (
|
|
self.system_prompt
|
|
if self.system_prompt is not None
|
|
else config.system_prompt
|
|
if config.system_prompt is not None
|
|
else None
|
|
)
|
|
if system_prompt:
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
messages.append({"role": "user", "content": prompt})
|
|
response = openai.ChatCompletion.create(
|
|
model=config.model or "gpt-3.5-turbo-0613",
|
|
messages=messages,
|
|
temperature=config.temperature,
|
|
max_tokens=config.max_tokens,
|
|
top_p=config.top_p,
|
|
stream=config.stream,
|
|
)
|
|
|
|
if config.stream:
|
|
return self._stream_llm_model_response(response)
|
|
else:
|
|
return response["choices"][0]["message"]["content"]
|
|
|
|
def _stream_llm_model_response(self, response):
|
|
"""
|
|
This is a generator for streaming response from the OpenAI completions API
|
|
"""
|
|
for line in response:
|
|
chunk = line["choices"][0].get("delta", {}).get("content", "")
|
|
yield chunk
|