Files
t6_mem0/embedchain/llm/openai.py
2024-01-02 17:32:48 +05:30

61 lines
2.3 KiB
Python

import json
import os
from typing import Any, Dict, Optional
from langchain.chat_models import ChatOpenAI
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class OpenAILlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None, functions: Optional[Dict[str, Any]] = None):
self.functions = functions
super().__init__(config=config)
def get_llm_model_answer(self, prompt) -> str:
response = self._get_answer(prompt, self.config)
return response
def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str:
messages = []
if config.system_prompt:
messages.append(SystemMessage(content=config.system_prompt))
messages.append(HumanMessage(content=prompt))
kwargs = {
"model": config.model or "gpt-3.5-turbo",
"temperature": config.temperature,
"max_tokens": config.max_tokens,
"model_kwargs": {},
}
api_key = config.api_key or os.environ["OPENAI_API_KEY"]
if config.top_p:
kwargs["model_kwargs"]["top_p"] = config.top_p
if config.stream:
from langchain.callbacks.streaming_stdout import \
StreamingStdOutCallbackHandler
callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
else:
chat = ChatOpenAI(**kwargs, api_key=api_key)
if self.functions is not None:
from langchain.chains.openai_functions import \
create_openai_fn_runnable
from langchain.prompts import ChatPromptTemplate
structured_prompt = ChatPromptTemplate.from_messages(messages)
runnable = create_openai_fn_runnable(functions=self.functions, prompt=structured_prompt, llm=chat)
fn_res = runnable.invoke(
{
"input": prompt,
}
)
messages.append(AIMessage(content=json.dumps(fn_res)))
return chat(messages).content