Files
t6_mem0/docs/components/llms/models/azure_openai.mdx
2025-07-29 00:26:59 +05:30

124 lines
4.1 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Azure OpenAI
---
<Snippet file="blank-notif.mdx" />
<Note> Mem0 Now Supports Azure OpenAI Models in TypeScript SDK </Note>
To use Azure OpenAI models, you have to set the `LLM_AZURE_OPENAI_API_KEY`, `LLM_AZURE_ENDPOINT`, `LLM_AZURE_DEPLOYMENT` and `LLM_AZURE_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/).
> **Note**: The following are currently unsupported with reasoning models `Parallel tool calling`,`temperature`, `top_p`, `presence_penalty`, `frequency_penalty`, `logprobs`, `top_logprobs`, `logit_bias`, `max_tokens`
## Usage
<CodeGroup>
```python Python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["LLM_AZURE_OPENAI_API_KEY"] = "your-api-key"
os.environ["LLM_AZURE_DEPLOYMENT"] = "your-deployment-name"
os.environ["LLM_AZURE_ENDPOINT"] = "your-api-base-url"
os.environ["LLM_AZURE_API_VERSION"] = "version-to-use"
config = {
"llm": {
"provider": "azure_openai",
"config": {
"model": "your-deployment-name",
"temperature": 0.1,
"max_tokens": 2000,
"azure_kwargs": {
"azure_deployment": "",
"api_version": "",
"azure_endpoint": "",
"api_key": "",
"default_headers": {
"CustomHeader": "your-custom-header",
}
}
}
}
}
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "Im not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="alice", metadata={"category": "movies"})
```
```typescript TypeScript
import { Memory } from 'mem0ai/oss';
const config = {
llm: {
provider: 'azure_openai',
config: {
apiKey: process.env.AZURE_OPENAI_API_KEY || '',
modelProperties: {
endpoint: 'https://your-api-base-url',
deployment: 'your-deployment-name',
modelName: 'your-model-name',
apiVersion: 'version-to-use',
// Any other parameters you want to pass to the Azure OpenAI API
},
},
},
};
const memory = new Memory(config);
const messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "Im not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
await memory.add(messages, { userId: "alice", metadata: { category: "movies" } });
```
</CodeGroup>
We also support the new [OpenAI structured-outputs](https://platform.openai.com/docs/guides/structured-outputs/introduction) model. Typescript SDK does not support the `azure_openai_structured` model yet.
```python
import os
from mem0 import Memory
os.environ["LLM_AZURE_OPENAI_API_KEY"] = "your-api-key"
os.environ["LLM_AZURE_DEPLOYMENT"] = "your-deployment-name"
os.environ["LLM_AZURE_ENDPOINT"] = "your-api-base-url"
os.environ["LLM_AZURE_API_VERSION"] = "version-to-use"
config = {
"llm": {
"provider": "azure_openai_structured",
"config": {
"model": "your-deployment-name",
"temperature": 0.1,
"max_tokens": 2000,
"azure_kwargs": {
"azure_deployment": "",
"api_version": "",
"azure_endpoint": "",
"api_key": "",
"default_headers": {
"CustomHeader": "your-custom-header",
}
}
}
}
}
```
## Config
All available parameters for the `azure_openai` config are present in [Master List of All Params in Config](../config).