Files

56 lines
2.6 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### Vertex AI
To use Google Cloud's Vertex AI for text embedding models, set the `GOOGLE_APPLICATION_CREDENTIALS` environment variable to point to the path of your service account's credentials JSON file. These credentials can be created in the [Google Cloud Console](https://console.cloud.google.com/).
### Usage
```python
import os
from mem0 import Memory
# Set the path to your Google Cloud credentials JSON file
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/path/to/your/credentials.json"
os.environ["OPENAI_API_KEY"] = "your_api_key" # For LLM
config = {
"embedder": {
"provider": "vertexai",
"config": {
"model": "text-embedding-004",
"memory_add_embedding_type": "RETRIEVAL_DOCUMENT",
"memory_update_embedding_type": "RETRIEVAL_DOCUMENT",
"memory_search_embedding_type": "RETRIEVAL_QUERY"
}
}
}
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "Im not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="john")
```
The embedding types can be one of the following:
- SEMANTIC_SIMILARITY
- CLASSIFICATION
- CLUSTERING
- RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, QUESTION_ANSWERING, FACT_VERIFICATION
- CODE_RETRIEVAL_QUERY
Check out the [Vertex AI documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/task-types#supported_task_types) for more information.
### Config
Here are the parameters available for configuring the Vertex AI embedder:
| Parameter | Description | Default Value |
| ------------------------- | ------------------------------------------------ | -------------------- |
| `model` | The name of the Vertex AI embedding model to use | `text-embedding-004` |
| `vertex_credentials_json` | Path to the Google Cloud credentials JSON file | `None` |
| `embedding_dims` | Dimensions of the embedding model | `256` |
| `memory_add_embedding_type` | The type of embedding to use for the add memory action | `RETRIEVAL_DOCUMENT` |
| `memory_update_embedding_type` | The type of embedding to use for the update memory action | `RETRIEVAL_DOCUMENT` |
| `memory_search_embedding_type` | The type of embedding to use for the search memory action | `RETRIEVAL_QUERY` |