[Azure AI Search](https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search/) (formerly known as "Azure Cognitive Search") provides secure information retrieval at scale over user-owned content in traditional and generative AI search applications. ### Usage ```python import os from mem0 import Memory os.environ["OPENAI_API_KEY"] = "sk-xx" #this key is used for embedding purpose config = { "vector_store": { "provider": "azure_ai_search", "config": { "service_name": "ai-search-test", "api_key": "*****", "collection_name": "mem0", "embedding_model_dims": 1536 , "use_compression": False } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ### Config Let's see the available parameters for the `qdrant` config: service_name (str): Azure Cognitive Search service name. | Parameter | Description | Default Value | | --- | --- | --- | | `service_name` | Azure AI Search service name | `None` | | `api_key` | API key of the Azure AI Search service | `None` | | `collection_name` | The name of the collection/index to store the vectors, it will be created automatically if not exist | `mem0` | | `embedding_model_dims` | Dimensions of the embedding model | `1536` | | `use_compression` | Use scalar quantization vector compression | False |