import os from typing import Dict, List, Optional from openai import AzureOpenAI from mem0.configs.llms.base import BaseLlmConfig from mem0.llms.base import LLMBase class AzureOpenAIStructuredLLM(LLMBase): def __init__(self, config: Optional[BaseLlmConfig] = None): super().__init__(config) # Model name should match the custom deployment name chosen for it. if not self.config.model: self.config.model = "gpt-4o-2024-08-06" api_key = os.getenv("LLM_AZURE_OPENAI_API_KEY") or self.config.azure_kwargs.api_key azure_deployment = os.getenv("LLM_AZURE_DEPLOYMENT") or self.config.azure_kwargs.azure_deployment azure_endpoint = os.getenv("LLM_AZURE_ENDPOINT") or self.config.azure_kwargs.azure_endpoint api_version = os.getenv("LLM_AZURE_API_VERSION") or self.config.azure_kwargs.api_version default_headers = self.config.azure_kwargs.default_headers # Can display a warning if API version is of model and api-version self.client = AzureOpenAI( azure_deployment=azure_deployment, azure_endpoint=azure_endpoint, api_version=api_version, api_key=api_key, http_client=self.config.http_client, default_headers=default_headers, ) def generate_response( self, messages: List[Dict[str, str]], response_format: Optional[str] = None, tools: Optional[List[Dict]] = None, tool_choice: str = "auto", ) -> str: """ Generate a response based on the given messages using Azure OpenAI. Args: messages (List[Dict[str, str]]): A list of dictionaries, each containing a 'role' and 'content' key. response_format (Optional[str]): The desired format of the response. Defaults to None. Returns: str: The generated response. """ user_prompt = messages[-1]["content"] user_prompt = user_prompt.replace("assistant", "ai") messages[-1]["content"] = user_prompt params = { "model": self.config.model, "messages": messages, "temperature": self.config.temperature, "max_tokens": self.config.max_tokens, "top_p": self.config.top_p, } if response_format: params["response_format"] = response_format if tools: params["tools"] = tools params["tool_choice"] = tool_choice if tools: params["tools"] = tools params["tool_choice"] = tool_choice response = self.client.chat.completions.create(**params) return self._parse_response(response, tools)