--- title: Overview description: 'Enhance your memory system with graph-based knowledge representation and retrieval' --- Mem0 now supports **Graph Memory**. With Graph Memory, users can now create and utilize complex relationships between pieces of information, allowing for more nuanced and context-aware responses. This integration enables users to leverage the strengths of both vector-based and graph-based approaches, resulting in more accurate and comprehensive information retrieval and generation. ## Installation To use Mem0 with Graph Memory support, install it using pip: ```bash pip install mem0ai[graph] ``` This command installs Mem0 along with the necessary dependencies for graph functionality. Try Graph Memory on Google Colab. Open In Colab ## Initialize Graph Memory To initialize Graph Memory you'll need to set up your configuration with graph store providers. Currently, we support Neo4j as a graph store provider. You can setup [Neo4j](https://neo4j.com/) locally or use the hosted [Neo4j AuraDB](https://neo4j.com/product/auradb/). Moreover, you also need to set the version to `v1.1` (*prior versions are not supported*). If you are using Neo4j locally, then you need to install [APOC plugins](https://neo4j.com/labs/apoc/4.1/installation/). User can also customize the LLM for Graph Memory from the [Supported LLM list](https://docs.mem0.ai/components/llms/overview) with three levels of configuration: 1. **Main Configuration**: If `llm` is set in the main config, it will be used for all graph operations. 2. **Graph Store Configuration**: If `llm` is set in the graph_store config, it will override the main config `llm` and be used specifically for graph operations. 3. **Default Configuration**: If no custom LLM is set, the default LLM (`gpt-4o-2024-08-06`) will be used for all graph operations. Here's how you can do it: ```python Basic from mem0 import Memory config = { "graph_store": { "provider": "neo4j", "config": { "url": "neo4j+s://xxx", "username": "neo4j", "password": "xxx" } }, "version": "v1.1" } m = Memory.from_config(config_dict=config) ``` ```python Advanced (Custom LLM) from mem0 import Memory config = { "llm": { "provider": "openai", "config": { "model": "gpt-4o", "temperature": 0.2, "max_tokens": 1500, } }, "graph_store": { "provider": "neo4j", "config": { "url": "neo4j+s://xxx", "username": "neo4j", "password": "xxx" }, "llm" : { "provider": "openai", "config": { "model": "gpt-4o-mini", "temperature": 0.0, } } }, "version": "v1.1" } m = Memory.from_config(config_dict=config) ``` ## Graph Operations The Mem0's graph supports the following operations: ### Add Memories ```python Code m.add("I like pizza", user_id="alice") ``` ```json Output {'message': 'ok'} ``` ### Get all memories ```python Code m.get_all(user_id="alice") ``` ```json Output { 'memories': [ { 'id': 'de69f426-0350-4101-9d0e-5055e34976a5', 'memory': 'Likes pizza', 'hash': '92128989705eef03ce31c462e198b47d', 'metadata': None, 'created_at': '2024-08-20T14:09:27.588719-07:00', 'updated_at': None, 'user_id': 'alice' } ], 'entities': [ { 'source': 'alice', 'relationship': 'likes', 'target': 'pizza' } ] } ``` ### Search Memories ```python Code m.search("tell me my name.", user_id="alice") ``` ```json Output { 'memories': [ { 'id': 'de69f426-0350-4101-9d0e-5055e34976a5', 'memory': 'Likes pizza', 'hash': '92128989705eef03ce31c462e198b47d', 'metadata': None, 'created_at': '2024-08-20T14:09:27.588719-07:00', 'updated_at': None, 'user_id': 'alice' } ], 'entities': [ { 'source': 'alice', 'relationship': 'likes', 'target': 'pizza' } ] } ``` ### Delete all Memories ```python m.delete_all(user_id="alice") ``` # Example Usage Here's an example of how to use Mem0's graph operations: 1. First, we'll add some memories for a user named Alice. 2. Then, we'll visualize how the graph evolves as we add more memories. 3. You'll see how entities and relationships are automatically extracted and connected in the graph. ### Add Memories Below are the steps to add memories and visualize the graph: ```python m.add("I like going to hikes", user_id="alice123") ``` ![Graph Memory Visualization](/images/graph_memory/graph_example1.png) ```python m.add("I love to play badminton", user_id="alice123") ``` ![Graph Memory Visualization](/images/graph_memory/graph_example2.png) ```python m.add("I hate playing badminton", user_id="alice123") ``` ![Graph Memory Visualization](/images/graph_memory/graph_example3.png) ```python m.add("My friend name is john and john has a dog named tommy", user_id="alice123") ``` ![Graph Memory Visualization](/images/graph_memory/graph_example4.png) ```python m.add("My name is Alice", user_id="alice123") ``` ![Graph Memory Visualization](/images/graph_memory/graph_example5.png) ```python m.add("John loves to hike and Harry loves to hike as well", user_id="alice123") ``` ![Graph Memory Visualization](/images/graph_memory/graph_example6.png) ```python m.add("My friend peter is the spiderman", user_id="alice123") ``` ![Graph Memory Visualization](/images/graph_memory/graph_example7.png) ### Search Memories ```python Code m.search("What is my name?", user_id="alice123") ``` ```json Output { 'memories': [...], 'entities': [ {'source': 'alice123', 'relation': 'dislikes_playing','destination': 'badminton'}, {'source': 'alice123', 'relation': 'friend', 'destination': 'peter'}, {'source': 'alice123', 'relation': 'friend', 'destination': 'john'}, {'source': 'alice123', 'relation': 'has_name', 'destination': 'alice'}, {'source': 'alice123', 'relation': 'likes', 'destination': 'hiking'} ] } ``` Below graph visualization shows what nodes and relationships are fetched from the graph for the provided query. ![Graph Memory Visualization](/images/graph_memory/graph_example8.png) ```python Code m.search("Who is spiderman?", user_id="alice123") ``` ```json Output { 'memories': [...], 'entities': [ {'source': 'peter', 'relation': 'identity','destination': 'spiderman'} ] } ``` ![Graph Memory Visualization](/images/graph_memory/graph_example9.png) > **Note:** The Graph Memory implementation is not standalone. You will be adding/retrieving memories to the vector store and the graph store simultaneously. If you want to use a managed version of Mem0, please check out [Mem0](https://mem0.dev/pd). If you have any questions, please feel free to reach out to us using one of the following methods: