import os from typing import Literal, Optional from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel from mem0.configs.embeddings.base import BaseEmbedderConfig from mem0.embeddings.base import EmbeddingBase class VertexAIEmbedding(EmbeddingBase): def __init__(self, config: Optional[BaseEmbedderConfig] = None): super().__init__(config) self.config.model = self.config.model or "text-embedding-004" self.config.embedding_dims = self.config.embedding_dims or 256 self.embedding_types = { "add": self.config.memory_add_embedding_type or "RETRIEVAL_DOCUMENT", "update": self.config.memory_update_embedding_type or "RETRIEVAL_DOCUMENT", "search": self.config.memory_search_embedding_type or "RETRIEVAL_QUERY", } credentials_path = self.config.vertex_credentials_json if credentials_path: os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentials_path elif not os.getenv("GOOGLE_APPLICATION_CREDENTIALS"): raise ValueError( "Google application credentials JSON is not provided. Please provide a valid JSON path or set the 'GOOGLE_APPLICATION_CREDENTIALS' environment variable." ) self.model = TextEmbeddingModel.from_pretrained(self.config.model) def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None): """ Get the embedding for the given text using Vertex AI. Args: text (str): The text to embed. memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None. Returns: list: The embedding vector. """ embedding_type = "SEMANTIC_SIMILARITY" if memory_action is not None: if memory_action not in self.embedding_types: raise ValueError(f"Invalid memory action: {memory_action}") embedding_type = self.embedding_types[memory_action] text_input = TextEmbeddingInput(text=text, task_type=embedding_type) embeddings = self.model.get_embeddings(texts=[text_input], output_dimensionality=self.config.embedding_dims) return embeddings[0].values