import os from typing import Literal, Optional from openai import AzureOpenAI from mem0.configs.embeddings.base import BaseEmbedderConfig from mem0.embeddings.base import EmbeddingBase class AzureOpenAIEmbedding(EmbeddingBase): def __init__(self, config: Optional[BaseEmbedderConfig] = None): super().__init__(config) api_key = self.config.azure_kwargs.api_key or os.getenv("EMBEDDING_AZURE_OPENAI_API_KEY") azure_deployment = self.config.azure_kwargs.azure_deployment or os.getenv("EMBEDDING_AZURE_DEPLOYMENT") azure_endpoint = self.config.azure_kwargs.azure_endpoint or os.getenv("EMBEDDING_AZURE_ENDPOINT") api_version = self.config.azure_kwargs.api_version or os.getenv("EMBEDDING_AZURE_API_VERSION") default_headers = self.config.azure_kwargs.default_headers self.client = AzureOpenAI( azure_deployment=azure_deployment, azure_endpoint=azure_endpoint, api_version=api_version, api_key=api_key, http_client=self.config.http_client, default_headers=default_headers, ) def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None): """ Get the embedding for the given text using OpenAI. Args: text (str): The text to embed. memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None. Returns: list: The embedding vector. """ text = text.replace("\n", " ") return self.client.embeddings.create(input=[text], model=self.config.model).data[0].embedding