[Elasticsearch](https://www.elastic.co/) is a distributed, RESTful search and analytics engine that can efficiently store and search vector data using dense vectors and k-NN search. ### Installation Elasticsearch support requires additional dependencies. Install them with: ```bash pip install elasticsearch>=8.0.0 ``` ### Usage ```python import os from mem0 import Memory os.environ["OPENAI_API_KEY"] = "sk-xx" config = { "vector_store": { "provider": "elasticsearch", "config": { "collection_name": "mem0", "host": "localhost", "port": 9200, "embedding_model_dims": 1536 } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ### Config Let's see the available parameters for the `elasticsearch` config: | Parameter | Description | Default Value | | ---------------------- | -------------------------------------------------- | ------------- | | `collection_name` | The name of the index to store the vectors | `mem0` | | `embedding_model_dims` | Dimensions of the embedding model | `1536` | | `host` | The host where the Elasticsearch server is running | `localhost` | | `port` | The port where the Elasticsearch server is running | `9200` | | `cloud_id` | Cloud ID for Elastic Cloud deployment | `None` | | `api_key` | API key for authentication | `None` | | `user` | Username for basic authentication | `None` | | `password` | Password for basic authentication | `None` | | `verify_certs` | Whether to verify SSL certificates | `True` | | `auto_create_index` | Whether to automatically create the index | `True` | ### Features - Efficient vector search using Elasticsearch's native k-NN search - Support for both local and cloud deployments (Elastic Cloud) - Multiple authentication methods (Basic Auth, API Key) - Automatic index creation with optimized mappings for vector search - Memory isolation through payload filtering