from unittest.mock import Mock, patch import pytest from mem0.configs.llms.base import BaseLlmConfig from mem0.llms.lmstudio import LMStudioLLM @pytest.fixture def mock_lm_studio_client(): with patch("mem0.llms.lmstudio.Client") as mock_lm_studio: mock_client = Mock() mock_client.list.return_value = {"models": [{"name": "lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf"}]} mock_lm_studio.return_value = mock_client yield mock_client def test_generate_response_without_tools(mock_lm_studio_client): config = BaseLlmConfig(model="lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf", temperature=0.7, max_tokens=100, top_p=1.0) llm = LMStudioLLM(config) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello, how are you?"}, ] mock_response = {"message": {"content": "I'm doing well, thank you for asking!"}} mock_lm_studio_client.chat.return_value = mock_response response = llm.generate_response(messages) mock_lm_studio_client.chat.assert_called_once_with( model="lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf", messages=messages, options={"temperature": 0.7, "num_predict": 100, "top_p": 1.0} ) assert response == "I'm doing well, thank you for asking!"