import logging from typing import Optional from pydantic import BaseModel try: import chromadb from chromadb.config import Settings except ImportError: raise ImportError("Chromadb requires extra dependencies. Install with `pip install chromadb`") from None from mem0.vector_stores.base import VectorStoreBase class OutputData(BaseModel): id: Optional[str] # memory id score: Optional[float] # distance payload: Optional[dict] # metadata class ChromaDB(VectorStoreBase): def __init__( self, collection_name="mem0", client=None, host=None, port=None, path=None ): """ Initialize the Qdrant vector store. Args: client (QdrantClient, optional): Existing Qdrant client instance. Defaults to None. host (str, optional): Host address for Qdrant server. Defaults to None. port (int, optional): Port for Qdrant server. Defaults to None. path (str, optional): Path for local Qdrant database. Defaults to None. """ if client: self.client = client else: self.settings = Settings(anonymized_telemetry=False) if host and port: self.settings.chroma_server_host = host self.settings.chroma_server_http_port = port self.settings.chroma_api_impl = "chromadb.api.fastapi.FastAPI" else: if path is None: path = "db" self.settings.persist_directory = path self.settings.is_persistent = True self.client = chromadb.Client(self.settings) self.collection = self.create_col(collection_name) def _parse_output(self, data): """ Parse the output data. Args: data (dict): Output data. Returns: list: Parsed output data. """ keys = ['ids', 'distances', 'metadatas'] values = [] for key in keys: value = data.get(key, []) if isinstance(value, list) and value and isinstance(value[0], list): value = value[0] values.append(value) ids, distances, metadatas = values max_length = max(len(v) for v in values if isinstance(v, list) and v is not None) result = [] for i in range(max_length): entry = OutputData( id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None, score=distances[i] if isinstance(distances, list) and distances and i < len(distances) else None, payload=metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None, ) result.append(entry) return result def create_col(self, name, embedding_fn=None): """ Create a new collection. Args: name (str): Name of the collection. embedding_fn (function): Embedding function to use. """ # Skip creating collection if already exists collections = self.list_cols() for collection in collections: if collection.name == name: logging.debug(f"Collection {name} already exists. Skipping creation.") collection = self.client.get_or_create_collection( name=name, embedding_function=embedding_fn, ) return collection def insert(self, name, vectors, payloads=None, ids=None): """ Insert vectors into a collection. Args: name (str): Name of the collection. vectors (list): List of vectors to insert. payloads (list, optional): List of payloads corresponding to vectors. Defaults to None. ids (list, optional): List of IDs corresponding to vectors. Defaults to None. """ self.collection.add(ids=ids, embeddings=vectors, metadatas=payloads) def search(self, name, query, limit=5, filters=None): """ Search for similar vectors. Args: name (str): Name of the collection. query (list): Query vector. limit (int, optional): Number of results to return. Defaults to 5. filters (dict, optional): Filters to apply to the search. Defaults to None. Returns: list: Search results. """ results = self.collection.query(query_embeddings=query, where=filters, n_results=limit) final_results = self._parse_output(results) return final_results def delete(self, name, vector_id): """ Delete a vector by ID. Args: name (str): Name of the collection. vector_id (int): ID of the vector to delete. """ self.collection.delete(ids=vector_id) def update(self, name, vector_id, vector=None, payload=None): """ Update a vector and its payload. Args: name (str): Name of the collection. vector_id (int): ID of the vector to update. vector (list, optional): Updated vector. Defaults to None. payload (dict, optional): Updated payload. Defaults to None. """ self.collection.update(ids=vector_id, embeddings=vector, metadatas=payload) def get(self, name, vector_id): """ Retrieve a vector by ID. Args: name (str): Name of the collection. vector_id (int): ID of the vector to retrieve. Returns: dict: Retrieved vector. """ result = self.collection.get(ids=[vector_id]) return self._parse_output(result)[0] def list_cols(self): """ List all collections. Returns: list: List of collection names. """ return self.client.list_collections() def delete_col(self, name): """ Delete a collection. Args: name (str): Name of the collection to delete. """ self.client.delete_collection(name=name) def col_info(self, name): """ Get information about a collection. Args: name (str): Name of the collection. Returns: dict: Collection information. """ return self.client.get_collection(name=name) def list(self, name, filters=None, limit=100): """ List all vectors in a collection. Args: name (str): Name of the collection. filters (dict, optional): Filters to apply to the list. Defaults to None. limit (int, optional): Number of vectors to return. Defaults to 100. Returns: list: List of vectors. """ array = [[0 for _ in range(1536)] for _ in range(1536)] results = self.collection.query(query_embeddings=array, where=filters, n_results=limit) return [self._parse_output(results)]