[pgvector](https://github.com/pgvector/pgvector) is open-source vector similarity search for Postgres. After connecting with postgres run `CREATE EXTENSION IF NOT EXISTS vector;` to create the vector extension. ### Usage ```python import os from mem0 import Memory os.environ["OPENAI_API_KEY"] = "sk-xx" config = { "vector_store": { "provider": "pgvector", "config": { "user": "test", "password": "123", "host": "127.0.0.1", "port": "5432", } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ### Config Here's the parameters available for configuring pgvector: | Parameter | Description | Default Value | | --- | --- | --- | | `dbname` | The name of the database | `postgres` | | `collection_name` | The name of the collection | `mem0` | | `embedding_model_dims` | Dimensions of the embedding model | `1536` | | `user` | User name to connect to the database | `None` | | `password` | Password to connect to the database | `None` | | `host` | The host where the Postgres server is running | `None` | | `port` | The port where the Postgres server is running | `None` |