import os from typing import Dict, List, Optional from openai import OpenAI from mem0.configs.llms.base import BaseLlmConfig from mem0.llms.base import LLMBase class OpenAIStructuredLLM(LLMBase): def __init__(self, config: Optional[BaseLlmConfig] = None): super().__init__(config) if not self.config.model: self.config.model = "gpt-4o-2024-08-06" api_key = self.config.api_key or os.getenv("OPENAI_API_KEY") base_url = self.config.openai_base_url or os.getenv("OPENAI_API_BASE") or "https://api.openai.com/v1" self.client = OpenAI(api_key=api_key, base_url=base_url) def generate_response( self, messages: List[Dict[str, str]], response_format: Optional[str] = None, tools: Optional[List[Dict]] = None, tool_choice: str = "auto", ) -> str: """ Generate a response based on the given messages using OpenAI. Args: messages (List[Dict[str, str]]): A list of dictionaries, each containing a 'role' and 'content' key. response_format (Optional[str]): The desired format of the response. Defaults to None. Returns: str: The generated response. """ params = { "model": self.config.model, "messages": messages, "temperature": self.config.temperature, } if response_format: params["response_format"] = response_format if tools: params["tools"] = tools params["tool_choice"] = tool_choice response = self.client.beta.chat.completions.parse(**params) return response.choices[0].message.content