# This example shows how to use vector config to use QDRANT CLOUD import os from dotenv import load_dotenv from mem0 import Memory # Loading OpenAI API Key load_dotenv() OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") USER_ID = "test" quadrant_host = "xx.gcp.cloud.qdrant.io" # creating the config attributes collection_name = "memory" # this is the collection I created in QDRANT cloud api_key = os.environ.get("QDRANT_API_KEY") # Getting the QDRANT api KEY host = quadrant_host port = 6333 # Default port for QDRANT cloud # Creating the config dict config = { "vector_store": { "provider": "qdrant", "config": {"collection_name": collection_name, "host": host, "port": port, "path": None, "api_key": api_key}, } } # this is the change, create the memory class using from config memory = Memory().from_config(config) USER_DATA = """ I am a strong believer in memory architecture. """ response = memory.add(USER_DATA, user_id=USER_ID) print(response)