[Qdrant](https://qdrant.tech/) is an open-source vector search engine. It is designed to work with large-scale datasets and provides a high-performance search engine for vector data. ### Usage ```python import os from mem0 import Memory os.environ["OPENAI_API_KEY"] = "sk-xx" config = { "vector_store": { "provider": "qdrant", "config": { "collection_name": "test", "host": "localhost", "port": 6333, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ### Config Let's see the available parameters for the `qdrant` config: | Parameter | Description | Default Value | | --- | --- | --- | | `collection_name` | The name of the collection to store the vectors | `mem0` | | `embedding_model_dims` | Dimensions of the embedding model | `1536` | | `client` | Custom client for qdrant | `None` | | `host` | The host where the qdrant server is running | `None` | | `port` | The port where the qdrant server is running | `None` | | `path` | Path for the qdrant database | `/tmp/qdrant` | | `url` | Full URL for the qdrant server | `None` | | `api_key` | API key for the qdrant server | `None` | | `on_disk` | For enabling persistent storage | `False` |