--- title: 🗄️ Vector databases --- ## Overview Utilizing a vector database alongside Embedchain is a seamless process. All you need to do is configure it within the YAML configuration file. We've provided examples for each supported database below: ## ChromaDB ```python main.py from embedchain import App # load chroma configuration from yaml file app = App.from_config(yaml_path="chroma-config-1.yaml") ``` ```yaml chroma-config-1.yaml vectordb: provider: chroma config: collection_name: 'my-collection' dir: db allow_reset: true ``` ```yaml chroma-config-2.yaml vectordb: provider: chroma config: collection_name: 'my-collection' host: localhost port: 5200 allow_reset: true ``` ## Elasticsearch ```python main.py from embedchain import App # load elasticsearch configuration from yaml file app = App.from_config(yaml_path="elasticsearch.yaml") ``` ```yaml elasticsearch.yaml vectordb: provider: elasticsearch config: collection_name: 'es-index' es_url: http://localhost:9200 allow_reset: true api_key: xxx ``` ## OpenSearch ```python main.py from embedchain import App # load opensearch configuration from yaml file app = App.from_config(yaml_path="opensearch.yaml") ``` ```yaml opensearch.yaml vectordb: provider: opensearch config: opensearch_url: 'https://localhost:9200' http_auth: - admin - admin vector_dimension: 1536 collection_name: 'my-app' use_ssl: false verify_certs: false ``` ## Zilliz ```python main.py from embedchain import App # load zilliz configuration from yaml file app = App.from_config(yaml_path="zilliz.yaml") ``` ```yaml zilliz.yaml vectordb: provider: zilliz config: collection_name: 'zilliz-app' uri: https://xxxx.api.gcp-region.zillizcloud.com token: xxx vector_dim: 1536 metric_type: L2 ``` ## LanceDB _Coming soon_ ## Pinecone _Coming soon_ ## Qdrant _Coming soon_ ## Weaviate _Coming soon_